1. Cho a > 0, b > 0 và a + b >= 2. Cmr: \(\frac{2+a}{1+a}+\frac{1-2b}{1+2b}\ge\frac{8}{7}\)
2. Gọi a, b, c lần lượt là độ dài 3 cạnh của một tam giác có chu vi = 2. Cmr: \(a^2+b^2+c^2+2abc< 2\)
3. Tìm GTNN của \(B=x^2+\sqrt{x^4+\frac{1}{x^2}}\)
4. Cho a, b,c là các số thực dương thỏa a + b + c = 6abc Timg GTNN của
\(S=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\)
5. Giải hpt
a. \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\\frac{1}{4}+\frac{3}{2}\left(x+\frac{1}{y}\right)=xy+\frac{1}{xy}\end{cases}}\)
b. \(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+xy+2y^2=4\end{cases}}\)
NHỜ M.N GIÚP MK VS. CẢM ƠN !!!
4. Ta có: \(a+b+c=6abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\Rightarrow xy+yz+zx=6\)
Lại có: \(\frac{bc}{a^3\left(c+2b\right)}=\frac{1}{a^3\frac{c+2b}{bc}}=\frac{\frac{1}{a^3}}{\frac{1}{b}+\frac{2}{c}}=\frac{x^3}{y+2z}\)
Tương tự suy ra:
\(S=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}\ge\frac{xy+yz+zx}{3}=2\)
Dấu = xảy ra khi \(x=y=z=\sqrt{2}\Rightarrow a=b=c=\frac{1}{\sqrt{2}}\)