Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)
được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{\left(1+1+1\right)^2}{a+b-c+b+c-a+c+a-b}\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
công thức
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{a+y+z}\)
chứng minh thế nào
Dễ thấy a,b,c là độ dài của tam giác nên
a + b - c > 0 ; b + c - a > 0 ; c+a-b > 0
Theo Cauchy-Schwarz thì
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi a=b=c = 1
Ta có: Vì chu vi của tam giác là 3 nên a + b + c = 3
Xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)
Tương tự CM được:
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) và \(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)
Cộng vế 3 BĐT trên lại ta được:
\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3^2}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi: \(a=b=c\)
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Ta chứng minh BĐT \(\frac{â^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)^3
(do nó rất dài nên mình sẽ bỏ phần này, thông cảm)(Đẳng thức xảy ra khi a=b=c)
Áp dụng ta có \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{1}{3}\right)^3=\frac{1}{27}\)
\(\Rightarrow a^3+b^3+c^3\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a=b=c và a + b + c =1 => a = b = c = 1/3 )
Mặt khác, ta có \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow1\ge27abc\Rightarrow abc\ge\frac{1}{27}\)=> \(3abc\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a = b = c = 1/3)
=> \(a^3+b^3+c^3+3abc\ge\frac{2}{9}\)(Đẳng thức khi a = b = c = 1/3)
Mình mới nghĩ được vậy thôi bạn à!
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{2}{c}\)
\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{\left(1+1\right)^2}{c+a-b+a+b-c}=\frac{2}{a}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{2}{b}\)
Cộng lại theo vế rồi chia cho 2, ta có đpcm
Dấu "=" xảy ra khi a = b = c
Bài làm:
Ta xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(BĐT Cauchy dạng cộng mẫu)
Tương tự ta chứng minh được:
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)và \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng vế 3 bất đẳng thức trên ta được:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi: \(a=b=c\)
Sa
Link https://lazi.vn/edu/exercise/cho-a-b-c-la-do-dai-3-canh-cua-mot-tam-giac-va-p-la-nua-chu-vi-chung-minh-1-p-a-1-p-b-1-p-c-21-a-a-b-1-c
2.
a, Có : (a+b+c).(1/a+1/b+1/c)
>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
= 9
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
2.
b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )
<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2
<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2
<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0