Cho tam giác ABC nhọn, đường cao AD, BE, CF cắt nhau tại H. Chứng minh tam giác EHB đồng dạng với tam giác AHB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
a: Xét ΔAEBvuông tại E và ΔAFC vuông tại F co
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
b: ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)
Do đó: ΔFHB\(\sim\)ΔEHC
Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
\(\widehat{DBH}\) chung
Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BE\cdot BH\)
1: Xét ΔAEB vuông tại Evà ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồg dạng vớiΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF; AE/Ab=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
2: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng vơi ΔABC
3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF/HB=HE/HC
Xét ΔHFE và ΔHBC có
HF/HB=HE/HC
góc FHE=góc BHC
=>ΔFHE đồng dạng với ΔBHC