K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔAEB vuông tại Evà ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồg dạng vớiΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF; AE/Ab=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

14 tháng 6 2023

bạn tự cẽ hình nha 

1. xét △FCA và △EBA có 

góc A chung

góc CFA = góc BEA = 90 độ 

=> △FCA ∼ △EBA (g.g)

vì △FCA ∼ △EBA 

=> FC/EB = CA/BA = FA/EA = FA/CA = EA/BA

2. xét △AFE và △ACB có 

góc A chung

FA/CA = EA/BA (cmt)

=> △AFE ∼ △ACB ( c.g.c)

 

1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

2: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng vơi ΔABC

3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF/HB=HE/HC

Xét ΔHFE và ΔHBC có

HF/HB=HE/HC

góc FHE=góc BHC

=>ΔFHE đồng dạng với ΔBHC

19 tháng 5 2021

bn biết làm ko????

23 tháng 3 2022

Vẽ hình thì tự nha.

1) Xét tam giác AFC và tam giác AEB có:

Góc BAC chung

Góc AFC=AEB(=900)

➩Hai tam giác AFC và AEB đồng dạng(g.g)

➩AF/AC=AE/AB

Hay AF.AB=AC.AB

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d) ...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEG = 90

0
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d) ...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEj = 90

0
10 tháng 5 2020

a) xét \(\Delta ACF\) và \(\Delta ABE\)

\(\widehat{BAC}\left(chung\right)\)

\(\widehat{AFC}=\widehat{AEB}=90^0\)

\(\Rightarrow\Delta ACF\) đồng dạng \(\Delta ABE\)

\(\Rightarrow\frac{AC}{AF}=\frac{AB}{AE}\)

\(\Rightarrow AC\cdot AE=AF\cdot AB\left(dpcm\right)\)

10 tháng 5 2020

b) Theo cmt: \(\Delta ACF\text{đồng dạng}\Delta ABE\)

\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\)

xét \(\Delta AFE\)\(\Delta ACB\)

\(\widehat{BAC}\left(chung\right)\)

\(\frac{AE}{AF}=\frac{AB}{AC}\) (cmt)

\(\Rightarrow\)\(\Delta AFE\)đồng dạng \(\Delta ACB\)(dpcm)