Bài 3. Tính nhanh:
\(\dfrac{1212}{1515}\) + \(\dfrac{1212}{3535}\) + \(\dfrac{1212}{6363}\) + \(\dfrac{1212}{9999}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(\frac{12}{15}\) +\(\frac{12}{35}\)+\(\frac{12}{63}\)+\(\frac{12}{99}\)
= 12 x (\(\frac{1}{15}\)+\(\frac{1}{35}\)+\(\frac{1}{63}\)+\(\frac{1}{99}\))
= 12 x ( \(\frac{1}{3x5}\)+\(\frac{1}{5x7}\)+\(\frac{1}{7x9}\)+\(\frac{1}{9x11}\))
= 12 x \(\frac{1}{2}\) x ( \(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)-\(\frac{1}{11}\))
= 6 x ( \(\frac{1}{3}\) - \(\frac{1}{11}\))
= 6 x \(\frac{8}{33}\)
= \(\frac{48}{33}\)=\(\frac{16}{11}\)
Nhớ tk nha
\(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
\(=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}\)
\(=12.\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=12.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
\(=12.\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=6.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=6.\frac{8}{33}\)
\(=\frac{16}{11}\)
_Chúc bạn học tốt_
Mua ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi
\(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
\(=1212.\left(\frac{1}{1515}+\frac{1}{3535}+\frac{1}{6363}+\frac{1}{9999}\right)\)
Sau đó tự tính rồi làm típ nha
Study well
rút gọn PS thì ta có
B = 4/5 + 12/35 + 4/21 + 4/33
B = 16/11
\(B=\frac{4}{5}+\frac{12}{35}+\frac{4}{21}+\frac{4}{33}\)
\(B=\left(\frac{28}{35}+\frac{12}{35}\right)+\left(\frac{44}{231}+\frac{28}{231}\right)\)
\(B=\frac{8}{7}+\frac{24}{77}\)
\(B=\frac{88}{77}+\frac{24}{77}=\frac{112}{77}=\frac{16}{11}\)
\(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
\(=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}\)
\(=12\cdot\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=12\cdot\frac{4}{33}\)
\(=\frac{16}{11}\)
\(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
\(=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}\)
\(=12\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=12\left(\frac{1}{3\cdot5}+\frac{1}{3\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right)\)
\(=12\cdot\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{3\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right)\)
\(=6\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=6\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=6\cdot\frac{8}{33}\)
\(=\frac{48}{33}\)
\(1,\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}=6\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=6\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).Tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=6\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{11}\right)=6\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{48}{33}=\frac{16}{11}\)
\(2,\left(x+1\right)+\left(x+2\right)+.....+\left(x+211\right)=211x+\left(1+2+....+211\right)=211x+\frac{212.211}{2}=211x+22366=23632\Leftrightarrow211x=23632-22366=1266\Leftrightarrow x=6\)
a, \(14:\left(4\frac{2}{3}:1\frac{5}{9}\right)+14:\left(\frac{2}{3}+\frac{8}{9}\right)\)
=> \(14:\frac{28}{9}+14:\frac{14}{9}=>14.\frac{9}{28}+14.\frac{9}{14}\)
=> 14. ( \(\frac{9}{28}+\frac{9}{14}\) )
=> \(14.\frac{27}{28}=\frac{419}{28}\)
b, \(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
=> \(\frac{4}{5}+\frac{12}{35}+\frac{4}{21}+\frac{4}{33}\)
=> \(\frac{8}{7}+\frac{24}{77}=\frac{16}{11}\)
bài 2 :
( x + 1 ) + ( x + 2 ) + ... + ( x + 211 ) = 23632
=> ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 211 ) = 23632
=> 211x + 22366 = 23632
=> 211x = 23632 - 22366
=> 211x = 1266
=> x = 1266 : 211
x = 6
\(=\dfrac{12\times101\times169\times1001}{13\times101\times144\times1001}=\dfrac{13}{12}\)
Ta có : 1212/3535=12/35 ; 1212/9999=12/99
Từ đề bài => = 12/15 +12/35 +12/63 +12/99
= 6 x ( 2/15 + 2/35 +2/63+2/99 )
= 6 x ( 2/3x5 + ....+ 2/9x11)
= 6 x ( 1/3 - 1/5 +....+1/9 - 1/11)
= 6 x ( 1/3 - 1/11)
= 6 x 8/33 = 48/33
\(\dfrac{1212}{1515}+\dfrac{1212}{3535}+\dfrac{1212}{6363}+\dfrac{1212}{9999}\)
=\(\dfrac{12}{15}+\dfrac{12}{35}+\dfrac{12}{63}+\dfrac{12}{99}\)
=\(\dfrac{16}{11}\)
Giải:
\(\dfrac{1212}{1515}+\dfrac{1212}{3535}+\dfrac{1212}{6363}+\dfrac{1212}{9999}\)
\(=\dfrac{12}{15}+\dfrac{12}{35}+\dfrac{12}{63}+\dfrac{12}{99}\)
\(=12.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}\right)\)
\(=12.\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)\)
\(=6.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=6.\left(\dfrac{1}{3}-\dfrac{1}{11}\right)\)
\(=6.\dfrac{8}{33}\)
\(=\dfrac{16}{11}\)