Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
\(=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}\)
\(=12\cdot\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=12\cdot\frac{4}{33}\)
\(=\frac{16}{11}\)
\(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
\(=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}\)
\(=12\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=12\left(\frac{1}{3\cdot5}+\frac{1}{3\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right)\)
\(=12\cdot\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{3\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right)\)
\(=6\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=6\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=6\cdot\frac{8}{33}\)
\(=\frac{48}{33}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế theo vế
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có \(\frac{7}{8}< 1\)
Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
Bài 1 :
36/1212 = 3/101
13/1313 = 1/101
3/101 + 1/101 = 4/101
Vậy 36/1212 + 13/1313 = 4/101.
Bài 2 :
A = 5/13 + 1/2 + -5/9 + -3/6 + 4/-9
A = 5/13 + 1/2 + -5/9 + -1/2 + -4/9
A = (1/2 + -1/2) + (-5/9 + -4/9) + 5/13
A = 0 + (-1) + 5/13
A = (-1) + 5/13 = -13/13 + 5/13 = 8/13.
Chúc bạn học giỏi nhé.
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)
bao quynh Cao bạn ơi hình như bn làm sai đề ạ 7/4 mà sao lại 4/7 ạ
B=(1-\(\frac{1}{2}\))x(1-\(\frac{1}{3}\))x(1-\(\frac{1}{4}\))x...x(1-\(\frac{1}{20}\))
B=\(\frac{1}{2}\)X\(\frac{2}{3}\)X\(\frac{3}{4}\)X...X\(\frac{19}{20}\)
B=\(\frac{1.2.3.4.4.5.7.8.9.10.11.12.13.14.15.16.17.18.19}{2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20}\)
B=20
Vậy B=20
Không biết kết quả đúng ko nhưng cách làm thì đúng.
B= \(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{20}\right)\)
=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)(Rút gọn cả tử xuống mẫu )
= \(\frac{1.2.3...19}{2.3.4...20}\)
=\(\frac{1}{20}\)
Vậy B= \(\frac{1}{20}\)
\(1,\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}=6\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=6\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).Tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=6\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{11}\right)=6\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{48}{33}=\frac{16}{11}\)
\(2,\left(x+1\right)+\left(x+2\right)+.....+\left(x+211\right)=211x+\left(1+2+....+211\right)=211x+\frac{212.211}{2}=211x+22366=23632\Leftrightarrow211x=23632-22366=1266\Leftrightarrow x=6\)
a, \(14:\left(4\frac{2}{3}:1\frac{5}{9}\right)+14:\left(\frac{2}{3}+\frac{8}{9}\right)\)
=> \(14:\frac{28}{9}+14:\frac{14}{9}=>14.\frac{9}{28}+14.\frac{9}{14}\)
=> 14. ( \(\frac{9}{28}+\frac{9}{14}\) )
=> \(14.\frac{27}{28}=\frac{419}{28}\)
b, \(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
=> \(\frac{4}{5}+\frac{12}{35}+\frac{4}{21}+\frac{4}{33}\)
=> \(\frac{8}{7}+\frac{24}{77}=\frac{16}{11}\)
bài 2 :
( x + 1 ) + ( x + 2 ) + ... + ( x + 211 ) = 23632
=> ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 211 ) = 23632
=> 211x + 22366 = 23632
=> 211x = 23632 - 22366
=> 211x = 1266
=> x = 1266 : 211
x = 6