Cho \(\Delta ABC\left(AB< AC\right)\)Kẻ \(AD\)Là Phân Giác Góc \(A\left(D\in BC\right)\)
CM\(AD^2=AC.AB\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
\(\widehat{BAH}=\widehat{CAK}\)(AK là tia phân giác của \(\widehat{BAC}\))
Do đó: ΔABH\(\sim\)ΔACK(g-g)
c) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{20}=\dfrac{CD}{25}\)
mà BD+CD=BC=30cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{20}=\dfrac{CD}{25}=\dfrac{BD+CD}{20+25}=\dfrac{30}{45}=\dfrac{2}{3}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{20}=\dfrac{2}{3}\\\dfrac{CD}{25}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{40}{3}\left(cm\right)\\CD=\dfrac{50}{3}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BD=\dfrac{40}{3}cm;CD=\dfrac{50}{3}cm\)
Trên tia đối của tia AC kẻ tia Ax.
Do đó AD là phân giác ngoài của \(\widehat{BAx}\).
Trên tia đối của tia AD lấy tia Ay. Lấy điểm F thuộc ia Ay sao cho \(\widehat{DCF}=\widehat{DAB}\)hay \(\widehat{DCF}=\widehat{A_2}\)
Xét \(\Delta BAD\)và \(\Delta FCD\)có:
\(\widehat{A_2}=\widehat{DCF}\)(hình vẽ trên).
\(\widehat{CDF}\)chung.
\(\Rightarrow\Delta BAD~\Delta FCD\left(g.g\right)\)
\(\Rightarrow\widehat{B_1}=\widehat{F_1}\)(2 góc tương ứng).
Và \(\frac{BD}{FD}=\frac{AD}{CD}\)(tỉ số đồng dạng).
\(\Rightarrow BD.CD=FD.AD\left(1\right)\)
Ta lại có: \(\widehat{A_1}=\widehat{A_2}\)(vì AD là phân giác của \(\widehat{BAx}\)).
Mà \(\widehat{A_1}=\widehat{A_3}\)(vì đối đỉnh).
\(\Rightarrow\widehat{A_2}=\widehat{A_3}\left(=\widehat{A_1}\right)\)
Xét \(\Delta BAD\)và \(\Delta FAC\)có:
\(\widehat{B_1}=\widehat{F_1}\)(chứng minh trên).
\(\widehat{A_2}=\widehat{A_3}\)(chứng minh trên).
\(\Rightarrow\Delta BAD~\Delta FAC\left(g.g\right)\)
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{AF}\)(tỉ số đồng dạng).
\(\Rightarrow AD.AF=AB.AC\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\).
\(\Rightarrow FD.AD-AD.AF=BD.CD-AB.AC\)
\(\Rightarrow BD.CD-AB.AC=AD\left(FD-AF\right)\)
\(\Rightarrow BD.CD-AB.AC=AD.AD\)
\(\Rightarrow BD.CD-AB.AC=AD^2\)(điều phải chứng minh).
Bài 1:
Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)
Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)
Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)
Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)
Xét \(\Delta EAI\) và \(\Delta HAI\) có:
\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)
\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)
\(AI\) chung
\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)
\(\Rightarrow IE=IH\left(1\right)\)
Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)
\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)
2.
Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)
=> BD = BE
Ta có: BD là phân giác ^ABC => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)
(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)
=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)
Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)
=> \(\Delta\)DEC cân tại E => DE = EC (3)
Từ D kẻ vuông góc với BC tại H và BA tại K.
D thuộc đường phân giác ^ABC ( theo t/c đường phân giác ) => DK = DH
Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED
=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )
=> DA = DE (4)
Từ (3) ; (4) => DA = EC
Vậy BC = BE + EC = BD + AD
Bạn có ghi thiếu đề k
bạn ơi sai đề rồi vì AD2=AB.AC-DC.DB moi dung