K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

We have : \(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)

By Cauchy - Schwarz and AM - GM have :

\(A\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}=\frac{6}{\left(a+b\right)^2}\ge6\)

Then greatest posible of A is 6 when \(a=b=\frac{1}{2}\)

18 tháng 5 2017

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

19 tháng 5 2017

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai

29 tháng 4 2018

\(A=\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)2}{2}}\ge4+2=6\)

"=" khi \(a=b=\frac{1}{2}\)

2 tháng 2 2021

Áp dụng Cô-si, ta được: \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=\left(a^2+\frac{b^2}{4}\right)+\left(a^2+\frac{1}{a^2}\right)\ge\left|ab\right|+2\Rightarrow\left|ab\right|\le2\)hay \(-2\le ab\le2\)(/*)

\(\Rightarrow S=ab+2009\ge2007\)

Đẳng thức xảy ra khi a = -1; b = 2 hoặc a = 1; b = -2

* Chú ý: Với đánh giá (/*) thì ta còn tìm được GTLN của S = 2011 khi a = 1; b = 2 hoặc a = 2; b = 1 hoặc a = -1; b = -2 hoặc a = -2; b = -1

13 tháng 8 2017

Áp dụng BĐT AM-GM ta có:

\(ab\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\)

Và \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+15\left(\frac{1}{16a^2}+\frac{1}{16b^2}\right)\)

\(\ge2\sqrt{a^2\cdot\frac{1}{16a^2}}+2\sqrt{b^2\cdot\frac{1}{16b^2}}+15\cdot2\sqrt{\frac{1}{16a^2}\cdot\frac{1}{16b^2}}\)

\(=\frac{1}{2}+\frac{1}{2}+15\cdot2\cdot\frac{1}{16ab}\)\(\ge1+15\cdot2\cdot\frac{1}{16\cdot\frac{1}{4}}=\frac{17}{2}\)

Xảy ra khi \(a=b=\frac{1}{2}\)

26 tháng 9 2017

\("a+b"^2\ge4ab=4\Rightarrow a+b\ge2\)

\(a^2+b^2\ge\frac{"a+b"^2}{2}\)

Nên A \(\ge\frac{3"a+b"^2}{2}+\frac{4}{a+b}=\frac{"a+b"^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}-\frac{4}{a+b}+"a+b"^2\ge6-2+4=8\)

Nên Min \(A=8\)khi \(a=b=1\)

P/s: Thay dấu Ngođặc Kép thành Ngoặc Đơn nhé

26 tháng 9 2017

Mình thấy thay a=b=1 vào ko đc 8 mak đc 4

24 tháng 8 2018

Ta có :\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{3}{2ab}\)

           \(A\ge\frac{4}{2ab+a^2+b^2}+\frac{3}{2ab}\)

           \(A\ge\frac{4}{\left(a+b\right)^2}+\frac{3}{\frac{\left(a+b\right)^2}{2}}\)

         \(A\ge4+6=10\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2ab\\a+b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)

Vậy Min A = 10 <=> a = b = 1/2