Cho tam giác ABC vuông tại A có AB=5cm,AC=12cm
a, Tính BC
b, Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Đường thẳng đi qua A song song với BC cắt CD tại E. Chứng minh tam giác EAC cân.
c, Gọi F là trung điểm của BC. Chứng minh CA,DF,BE đồng quy tại một điểm
ai giải nhanh bài này mình tick cho nha
a) Áp dụng định lý Py-ta-go, ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=5^2+12^2\)
\(\Rightarrow BC^2=169\left(cm\right)\)
\(\Rightarrow BC=\sqrt{169}=13\left(cm\right)\)
b) Vì \(\Delta ABC=\Delta ADC\)
\(\Rightarrow\widehat{C_1}=\widehat{C_2}\left(2\text{ góc tương ứng}\right)\)
Vì BC // AE (gt)
\(\Rightarrow\widehat{CED}=\widehat{C_1}\left(\text{so le}\right)\)
\(\Rightarrow\Delta EAC\text{ là tam giác cân. }\)
=> ĐPCM
d) Ta có: BF = CF (F là trung điểm của BC)
AB = AD (gt)
=> DP và AB là 2 đường trung tuyến của tam giác BDC
=> G là trọng điểm của tam giác BDC
=> BG là đường trung tuyến còn lại của tam giác BDC
<=> CA; DF; BE cùng đi qua 1 điểm hoặc CA; DF; BE đồng quy tại 1 điểm
=> ĐPCM
P/s: Mk vẽ hình hơi xấu, mong bn thông cảm