cho a,b là 2 STN liên tiếp và c=ab. CMR \(P=a^2+b^2+c^2\) là một số chính phương lẻ
mong mọi ng giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b là 2 số tự nhiên liên tiếp nên b=a+1
Thay b=a+1 và c=ab vào P=
a^2 + (a+1)^2+a^2.b^2 = a^2+a^2+2a+1+a^2.(a+1)^2=
a^4+2a^3+3a^2+2a+1 = (a+1)(a^3+a^2+2a)+1= (a+1)((a^2)(a+1)+2a)+1=a^2(a+1)^2+2a.(a+1)+1=((a+1).a+1)^2 Hằng đẳng thức
vi a.(a+1) chẵn nên a.(a+1)+1 lẻ suy ra P là số chính phương lẻ
a, b là 2 số tự nhiên liên tiếp nên a hoặc b sẽ là một số chẵn hoặc một số lẻ. => a=2k, b=2k+1, c=2k(2k+1)
P=a^2+b^2+c^2
P=(2k)^2+(2k+1)^2+[(2k)(2k+1)]^2
P=4k^2+4k^2+1+2.2k+4k^2(2k+1)^2
P=4k^2+4k^2+4k+4k^2.(4k^2+1+4k)+1
mà 4k^2+4k^2+4k+4k^2.(4k^2+1+4k) chia hết cho 2
=> P ko chia hết cho 2.
P là số chính fuong lẻ
mong các bạn giải cho mik. mik sẵn sàng tick đúng cho các bạn
vì a và b là 2 stn liên tiếp suy ra a và b có dạng n và n+1
\(a^2+b^2+c^2\Rightarrow n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2+\left(n+1\right)^2\left(n^2+1\right)\)
\(=n^2+\left(n^2+2n+1\right)\left(n^2+1\right)=n^2+2n\left(n^2+1\right)+\left(n^2+1\right)^2=\left(n^2+n+1\right)^2\)
\(\Rightarrow\)P là số chính phương (1)
vì a và b là 2 stn liên tiếp nên 1 số chẵn và 1 số lẻ \(\Rightarrow\)a^2+b^2 cũng vậy nên a^2+b^2 lẻ vì c=ab mà 1 trong a b là số chẵn nên c chẵn và c^2 chẵn \(\Rightarrow a^2+b^2+c^2\)lẻ (2)
từ (1) và (2) \(\Rightarrow P\)là số chính phương lẻ
2 SNT liên tiếp là 2 và 3 => a=2, b=3 , c=6 => P=49 là scp lẻ