cmr 1/2+1/3+1/4+1/5+1/6+1/7+...........=1/16 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{4x+9}{6x+5}\)\(\in Z\)thì \(4x+9\)chia hết \(6x+5\)
\(\Rightarrow3.\left(4x+9\right)\)chia hết cho \(6x+5\)
\(\Rightarrow\)\(12x+27\)chia hết cho \(6x+5\)
\(\Rightarrow\)\(2.\left(6x+5\right)+17\)chia hết cho \(6x+5\)
\(\Rightarrow\)17 chia hết cho \(6x+5\)
\(\Rightarrow\)6x +5 thuộc Ư(17)
suy ra 6x+5 thuộc {+-1;+-17}
ĐẾN ĐÂY BẠN TỰ LẬP BẲNG TÌM X NHÉ
Vậy x thuộc{-1;2}
B)Tích đi mình làm tiếp cho
Có: 1/3+1/6+1/10+...+2/n(n+1)=2003/2004
=>1/2.[ 1/3+1/6+1/10+...+2/n(n+1)]=2003/2004.1/2
=>1/6+1/12+1/20+...+1/n.(n+1)=2003/2004.1/2
=>1/2.3+1/3.4+1/4.5+...+1/n.(n+1)=2003/2004.1/2
=>1/2-1/3+1/3-1/4+1/4-1/5+....+1/n-1/n+1=2003/2004.1/2
=>1/2-1/n+1=2003/4008
=>1/n+1=1/4008
=>n+1=4008
=>n=4007
Vậy n=4007
Quy đồng mẫu các phân số trong A
Chọn mẫu số chung là M = 24.3.5.7.9.11.13
=> \(A=\frac{k_1+k_2+...k_{16}}{2^4.3.5.7...13}\) với k1; k2; ...; k16 là thừa số phị của các phân số 1/2; 1/3; ...; 1/16
Nhận xét: k1; ...; k15 chẵn . riêng k16 = 3.5.7...13 lẻ nên A có tử số lẻ và mẫu số chẵn => tử không chia hết cho mẫu => A không là số nguyên
a) mình lười làm
b)=\(\frac{\left(2a+9\right)+\left(5a+17\right)-\left(3a\right)}{a+3}=\frac{\left(2a+5a-3a\right)+\left(9+17\right)}{a+3}=\frac{4a+26}{a+3}\)
Để Tổng ban đầu nguyên thì 4a+26 phải chia hết cho a+3
=>4(a+3)+14 chia hết cho a+3
Mà 4(a+3) chia hết cho a+3
=>14 chia hết cho a+3
=> a+3 thuộc Ư(14)={1;2;7;14;-1;-2;-7;-14}
=>a thuộc {-2;-1;4;11;-4;-5;-10;-17}
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3