cho tứ giác ABCD nt đường tròn O. AB và CD cắt tại E, AD và BC cắt tại F, từ E và F kẻ tia phân giác Ex và Fy. cmr Ex vuông góc Fy
cảm ơn trước ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài nay có trong TOÁN NÂNG CAO & CÁC CHUYÊN ĐỀ HÌNH HỌC 8 của Vũ Dương Thuỵ . Các trong sách cũg hay nhưng mình còn 1 cách khác nhanh hơn và dể hiểu hơn nhìu so với cách trong sách.
Giải
⊕⊕ Ta có:
Iˆ1I^1 == 360∘360∘ −− Iˆ2I^2
== 360∘360∘-(360∘360∘ −− AˆA^ −− Fˆ1F^1 −− Eˆ1E^1)
== AˆA^ ++ Fˆ1F^1 ++ Eˆ1E^1
== AˆA^ ++ Fˆ2F^2 ++ Eˆ2E^2
== AˆA^ +180∘−Aˆ−Dˆ22180∘−A^−D^22 ++ 180∘−Aˆ−Bˆ22
chắc sai
Gọi giao điểm của FI với BC là M . Góc EMF là góc ngoài đỉnh F của hai tam giác MBF và MIE , ta có :
\(\widehat{EMF}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)
\(\widehat{EMF}\)\(=\widehat{F_2}\)\(+\widehat{EIF}\)
Suy ra : \(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)\(\left(1\right)\)
Gọi giao điểm của EI với CD là N
Chứng minh tương tự , ta có :
\(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{NDF}\)\(+\widehat{E_1}\)\(\left(2\right)\)\(...\)
đặt
Ta có
mà
tới đây thế vào thôi
trường hợp có cạnh đối song song thì không tính được
Bài 2 mình làm trường hợp cả 2 đều là phân giác trong nhé
Gọi O là giao điểm của 2 đường phân giác trong kẻ từ E và F