K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{yz\left(x+y+z\right)+xz\left(x+y+z\right)+xy\left(x+y+z\right)-xyz}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\)\(xyz+y^2z+yz^2+x^2z+xyz+xz^2+x^2y+xy^2+xyz-xyz=0\)

\(\Leftrightarrow\)\(\left(xyz+y^2z\right)+\left(xyz+x^2z\right)+\left(xz^2+yz^2\right)+\left(xy^2+x^2y\right)=0\)

\(\Leftrightarrow yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(yz+xz+xy+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y\\x+z=0\end{cases}}=0\)  hoặc y+z=0

Do đó ta có B=0

12 tháng 9 2021

\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z+1\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z+1\right|=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=0-\frac{1}{2}\\y=0+\frac{3}{4}\\z=0-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{3}{4}\\z=-1\end{cases}}\)

25 tháng 3 2020

c) \(\left(x-7\right).\left(y+2\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-7=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0+7\\y=0-2\end{cases}}\Rightarrow\hept{\begin{cases}x=7\left(TM\right)\\y=-2\left(TM\right)\end{cases}}\)

Vậy \(\left(x;y\right)\in\left\{7;-2\right\}.\)

Chúc bạn học tốt!

12 tháng 3 2020

x/2-2/y=1/5

2/y=x/2-1/5

2/y=5x/10-2/10

2/y=5x-2/10

=>y(5x-2)=20

BẠN LÀM NỐT NHA!!

ĐƯA VỀ ƯỚC CỦA 1 SỐ NHA

CHÚC BN HOK TỐT

8 tháng 7 2017

Cái này dễ :v, Mincopski thẳng cánh :v

\(A=\sqrt{8x^2+1}+\sqrt{8y^2+1}+\sqrt{8z^2+1}\)

\(=\sqrt{\left(\sqrt{8}x\right)^2+1}+\sqrt{\left(\sqrt{8}y\right)^2+1}+\sqrt{\left(\sqrt{8}z\right)^2+1}\)

\(\ge\sqrt{\left(\sqrt{8}x+\sqrt{8}y+\sqrt{8}z\right)^2+\left(1+1+1\right)^2}\)

\(\ge\sqrt{\left(\sqrt{8}\left(x+y+z\right)\right)^2+9}\)

\(\ge\sqrt{\sqrt{8}^2+9}=\sqrt{8+9}=17\)

Xảy ra khi \(x=y=z=\frac{1}{3}\)

Done !! :3

9 tháng 7 2017

xem lai đi bạn ơi đây là timg GTLN chứ không phải GTNN bạn nhé. mà mình chưa thấy sử dụng x,y,z thuộc đoạn 0;1 nhỉ

12 tháng 11 2017

\(-\left(x+\dfrac{1}{8}\right)^{2016}-\left|y+5\right|-\left(x+z\right)^{2018}\)

Với mọi \(x;y;z\in R\) ta có:

\(\left\{{}\begin{matrix}-\left(x+\dfrac{1}{8}\right)^{2016}\le0\\-\left|y+5\right|\le0\\-\left(x+z\right)^{2018}\le0\end{matrix}\right.\)

\(\Rightarrow-\left(x+\dfrac{1}{8}\right)^{2016}-\left|y+5\right|-\left(x+z\right)^{2018}\le0\)

Ta có pt:

\(\left\{{}\begin{matrix}-\left(x+\dfrac{1}{8}\right)^{2016}-\left|y+5\right|-\left(x+z\right)^{2018}\ge0\\-\left(x+\dfrac{1}{8}\right)^{2016}-\left|y+5\right|-\left(x+z\right)^{2018}\le0\end{matrix}\right.\)

Nên \(-\left(x+\dfrac{1}{8}\right)^{2016}-\left|y+5\right|-\left(x+z\right)^{2018}=0\)

Nên cặp số \(x;y;z\) thỏa mãn là :\(\left\{{}\begin{matrix}x=-\dfrac{1}{8}\\y=-5\\z=\dfrac{1}{8}\end{matrix}\right.\)