Cho hai đa thức:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y.
Tính M + N; M - N; N - M.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M+N=2x^2+4xyz-10xy+2-y\)
\(M-N=-8x^2+2xyz-4+y\)
\(N-M=8x^2-2xyz+4-y\)
M+N=2x2+4xyz−10xy+2−y
M−N=−8x2+2xyz−4+y
N−M=8x2−2xyz+4−y
M + N = (3xyz – 3x2 + 5xy – 1) + (5x2 + xyz – 5xy + 3 – y)
= 3xyz – 3x2 + 5xy – 1 + 5x2 + xyz – 5xy + 3 – y
= (3xyz + xyz)+( –3x2 + 5x2) + (5xy – 5xy) – y + ( – 1+3)
= 4xyz + 2x2 – y + 2
M – N = (3xyz – 3x2 + 5xy – 1) – (5x2 + xyz – 5xy + 3 – y)
= 3xyz – 3x2 + 5xy – 1 – 5x2 – xyz + 5xy – 3 + y
= (– 3x2 – 5x2) + (3xyz – xyz) + (5xy + 5xy) + y +(– 1 – 3)
= –8x2 + 2xyz + 10xy + y – 4.
N – M = (5x2 + xyz – 5xy + 3 – y) – (3xyz – 3x2 + 5xy – 1)
= 5x2 + xyz – 5xy + 3 – y – 3xyz + 3x2 – 5xy +1
= (5x2 + 3x2)+ (xyz – 3xyz)+( – 5xy – 5xy) + (3 + 1 )– y
= 8x2 – 2xyz – 10xy – y + 4.
Chú ý: Vì M – N và N – M là hai đa thức đối nhau nên
N – M = 8x2 – 2xyz – 10xy – y + 4
(Ta chỉ cần đổi dấu mỗi hạng tử của đa thức M – N là thu được N – M).
\(M+N=3xyz-3x^2+5xy-1+5x^2+xyz-5xy+3-y\)
\(=4xyz+2x^2-2-y\)
\(M-N=3xyz-3x^2+5xy-1-5x^2-xyz+5xy-3+y\)
\(=2xyz-8x^2+10xy-4+y\)
\(N-M=5x^2+xyz-5xy+3-y-3xyz+3x^2-5xy+1\)
\(=-2xyz+8x^2-10xy+4-y\)
Nhận xét: Hiệu M - N có kết quả đối với kết quảh hiệu N - M
M+N=3xyz-3x^2+5xy-1+5x2+xyz-5xy+3-y
=3xyz+xyz-3x^2+5x^2+5xy-5xy-y-1+3
=4xyz+2x^2-y+2
M-N= 3xyz-3x^2+5xy-1-(5x^2+xyz-5xy+3-y)
=3xyz-3x^2+5xy-1-5x^2-xyz+5xy-3+y
=3xyz-xyz-3x^2-5x^2+5xyz+5xyz+y-1-3
=2xyz-8x^2+10xyz+y-4
⇒N-M=-(2xyz-8x^2+10xyz+y-4)
=-2xy+8x^2-10xyz-y+4
Bạn tự nhận xét nha
thì mik chỉ làm cộng trừ đa thức thôi. Tik cho mik nha
\(M+N=3xyz-2x^2+5xy+5x^2+xyz-5y+3-2y=3x^2+4xyz+5xy-7y+3\)
\(N-M=5x^2+xyz-5y+3-2y-3xyz+2x^2-5xy=7x^2-2xyz-5xy-7y+3\)
M+N
\(=3xyz-3x^2+5xy-1+5x^2+xyz-5xy+3\)
\(=2x^2+4xyz+2\)
M-N
\(=3xyz-3x^2+5xy-1-5x^2-xyz+5xy-3\)
\(=-8x^2+2xyz+10xy-4\)
2,
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
3,
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
4,
a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3
= x2+2xy+(-3x3+3x3)+2y3-y3
=x2+2xy+2y3-y3
Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:
52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129
b,
Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1
5,
a, C=A+B
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = 2x2 – y + xy - x2y2
b) C + A = B => C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = - x2y2 - xy + 3y - 2.
Ta có:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
Ta có:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.