K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

Có \(x^2-x+1>0;\forall x\)

\(-9< \dfrac{3x^2-mx-6}{x^2-x+1}< 6\) nghiệm đúng với mọi x

\(\Leftrightarrow-9\left(x^2-x+1\right)< 3x^2-mx-6< 6\left(x^2-x+1\right)\) nghiệm đúng với mọi x

\(\Leftrightarrow12x^2-x\left(m+9\right)+3>0\) (1) nghiệm đúng với mọi x và \(3x^2+x\left(m-6\right)+12>0\) (2) nghiệm đúng với mọi x

Từ (1) \(\Leftrightarrow\left\{{}\begin{matrix}a=12>0\left(lđ\right)\\\Delta< 0\end{matrix}\right.\)\(\Leftrightarrow m^2+18m-63< 0\) \(\Leftrightarrow m\in\left(-21;3\right)\)

Từ (2)\(\Leftrightarrow\left\{{}\begin{matrix}a=3>0\left(lđ\right)\\\Delta< 0\end{matrix}\right.\)\(\Leftrightarrow m^2-12m-108< 0\)\(\Leftrightarrow m\in\left(-6;18\right)\)

Kết hợp (1) và (2) \(\Rightarrow m\in\left(-6;3\right)\)

14 tháng 2 2020

< 6 thôi ạ , mình ấn nhầm thừa 1 số 6

5 tháng 3 2021

2.

b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)

\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)

\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)

\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)

Vậy \(m\in\left(-2;4\right)\)

5 tháng 3 2021

2.

a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m>5\)

NV
30 tháng 7 2021

BPT đúng với mọi x thuộc R khi và chỉ khi:

\(\Delta=\left(m-1\right)^2-3\le0\)

\(\Leftrightarrow\left(m-1\right)^2\le3\)

\(\Leftrightarrow1-\sqrt{3}\le m\le1+\sqrt{3}\)

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

c: Thay m=-2 vào pt, ta được:

\(x^2-2x+1=0\)

hay x=1

f: Thay x=-3 vào pt, ta được:

\(9-3m+m+3=0\)

=>-2m+12=0

hay m=6

28 tháng 8 2021

hello

NV
7 tháng 5 2023

Đặt \(\dfrac{\pi}{3}+mx=t\Rightarrow mx=t-\dfrac{\pi}{3}\)

\(\Rightarrow\dfrac{\pi}{6}-mx=\dfrac{\pi}{6}-\left(t-\dfrac{\pi}{3}\right)=\dfrac{\pi}{2}-t\)

Pt trở thành:

\(cos^2t+4cos\left(\dfrac{\pi}{2}-t\right)=4\)

\(\Leftrightarrow1-sin^2t+4sint=4\)

\(\Leftrightarrow sin^2t-4sint+3=0\Rightarrow\left[{}\begin{matrix}sint=1\\sint=3>1\end{matrix}\right.\)

\(\Rightarrow t=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow\dfrac{\pi}{3}+mx=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow mx=\dfrac{\pi}{6}+k2\pi\)

\(\Rightarrow x=\dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)\)

\(0< x< 1\Rightarrow0< \dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)< 1\Rightarrow-\dfrac{1}{12}< k< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\) (1)

Pt có 4 nghiệm pb trên đoạn đã cho khi có 4 giá trị k nguyên thỏa mãn (1)

\(\Rightarrow k=\left\{0;1;2;3\right\}\)

\(\Rightarrow3< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\le4\)

\(\Rightarrow\dfrac{37\pi}{6}< m\le\dfrac{49\pi}{6}\)

 

NV
7 tháng 5 2023

Nghiệm trên \(\left(0;\pi\right)\) hay (0;1) nhỉ?

Thực ra 2 cái này cũng ko khác gì nhau về mặt pp giải toán nhưng mà \(\left(0;\pi\right)\) thì tính toán đẹp hơn \(\left(0;1\right)\) nhiều