Tìm số tự nhiên k để 3.k là số nguyên tố
Tìm số tự nhiên k để 7.k là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có số nguyên tố là số có ước chỉ là chính nó và số một
=> nếu k lớn hơn 1 thì k sẽ chia hết cho cả những số khác 1 và chính nó
=> k=1
a)Ta có số nguyên tố là số có ước chỉ là chính nó và số một
=> nếu k lớn hơn 1 thì k sẽ chia hết cho cả những số khác 1 và chính nó
=> k=1
Số tự nhiên k là 1
Vì 7.1=7 và 7 chia hết cho 1 và chính nó
11 cũng như vậy
(n+3)(n+1) là số nguyên tố
<=> n+3=1 hoặc n+1=1
n+3=1=>n=-2(vô lí)
n+1=1=>n=0
Vậy (n+3)(n+1) là số nguyên tố khi và chỉ khi n=0
Mọi người tick ủng hộ nhé!!!!!!!!!!!!!!!!
(n + 3)(n + 1) là số nguyên tố
< = > n + 3 = 1 hoặc n + 1 = 1
n + 3 = 1 => n= -2 (vô lí)
n + 1 = 1 => n = 0
Vậy (n + 3)(n+ 1) là số nguyên tố kh và chỉ khi n = 0
Có : 4n+n^2 = n.(n+4)
Để n.(n+4) là số nguyên tố thì n=1 hoặc n+4= 1
=> n=1 hoặc n=-3
Mà n là số tự nhiên => n=1
Khi đó : n^2+4n = 1^2+4.1 = 5 là số nguyên tố (tm)
Vậy n = 1
k mk nha
gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d
ta có 2n + 3 chia hết cho d
=> 2( 2n + 3) chia hết cho d
=> 4n + 6 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 3) chia hết cho d
=> 4n + 6 - 4n - 3 chia hết cho d
=> 3 chia hết cho d
=> d = { 1,3}
để 2 số nguyên tố cùng nhau thì 2 số không chia hết cho 3
=> n = 1,... t=B tự tìm nhé
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Toán lớp 6 Ước chung
Gọi d e ƯC ( 2n+3;4n+1)
suy ra:
(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d
suy ra 8n+3 chia hết cho d
suy ra
(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d
suy ra: 8n+1 chia hết cho d
suy ra : (8n+3)-(8n+1) chia hết cho d
suy ra: 2 chia hết cho d
suy ra : d thuộc Ư(2)
suy ra : d thuộc {1,2}
vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ
suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1
vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau
Giả sử \(7n+13\) và \(2n+4\) cùng chia hết cho số nguyên tố d
Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)
Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)
Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\) và \(2n+4\) là hai số nguyên tố cùng nhau
Đặt (7n + 13; 2n + 4) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)
\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d
\(\Rightarrow\) 2 \(⋮\) d
\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)
mà 7n + 13 \(⋮̸\)2
\(\Rightarrow\) d = 1
Vậy (7n + 13; 2n + 4) = 1
xét k=0=>3k=0(loại)
xét k=1=>3k=3(thỏa mãn)
xét k>1=>.3k có nhiều hơn 2 ước(loại)
=>k=1
tương tự với câu 7k
a) Nếu k > 1 thì 3k có ít nhất ba ước là 1, 3, k; nghĩa là nếu k > 1 thì 3k là một hợp số. Do đó để 3k là một số nguyên tố thì k = 1.
b) ĐS: k = 1