Tính tổng :
B= 1+1/3+(1/3)^2+(1/3)^3+...+(1/3)^2018
C=1+1/2+(1/2)^2+(1/2)^3+...+(1/2)^2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(75\%+1,2-2+\dfrac{1}{5}+2018^0\)
=\(\dfrac{3}{4}+\dfrac{6}{5}-2+\dfrac{1}{5}+1\)
=\(\left(\dfrac{6}{5}+\dfrac{1}{5}\right)+\left(\dfrac{3}{4}-2+1\right)\)
=\(\dfrac{7}{5}+\dfrac{-1}{4}\)
=\(\dfrac{23}{20}\)
b) \(\left(\dfrac{-4}{3}+0,75\right):\dfrac{2017}{2018}+\left(1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\)
=\(\left(\dfrac{-4}{3}+0,75+1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\)
=\(\left[\left(\dfrac{-4}{3}+1+\dfrac{1}{3}\right)+\left(0,75-75\%\right)\right]:\dfrac{2017}{2018}\)
=\(\left[0+0\right]:\dfrac{2017}{2018}\)
=0\(:\dfrac{2017}{2018}\)
=0
c)\(\left(2018-\dfrac{1}{3}-\dfrac{2}{4}-\dfrac{3}{5}-\dfrac{4}{6}-...-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)
=\(\left(1-\dfrac{1}{3}-1-\dfrac{2}{4}-1-\dfrac{3}{5}-1-\dfrac{4}{6}-...-1-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)
=\(\left(\dfrac{2}{3}-\dfrac{2}{4}-\dfrac{2}{5}-\dfrac{2}{6}-...-\dfrac{2}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left[2.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[\dfrac{5}{5}.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[5.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(10.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =-10
A = (-1)(-1)^2(-1)^3...(-1)^2019
A = (-1)^1+2+3+...+2019
A = (-1)^2039190
A = 1
S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4
4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)
4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019
4S = 2018.2019.2020.2021
S = 2018.2019.2020.2021 : 4 = ...
Ta có : \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{100}}\)
\(\Leftrightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=2-\frac{1}{2^{99}}\)
\(\Leftrightarrow A=2-\frac{1}{2^{99}}\)
B tương tự
a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)
Thế vào bởi các số sẽ có kết quả
b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)
Làm tương tự trên
c) Lấy nhân tử chung là 5 rồi làm như câu a)
(Dấu . là dấu nhân)
a/\(\dfrac{2}{5}\cdot\dfrac{4}{3}-\dfrac{2}{5}:3\)
\(=\dfrac{2}{5}\cdot\dfrac{4}{3}-\dfrac{2}{5}\cdot\dfrac{1}{3}\)
\(=\dfrac{2}{5}\cdot\left(\dfrac{4}{3}-\dfrac{1}{3}\right)\)
\(=\dfrac{2}{5}\cdot1\)
\(=\dfrac{2}{5}\)
b/\(\dfrac{2010}{2018}:\dfrac{1}{2}+\dfrac{7}{2018}:\dfrac{1}{2}\)
\(=\left(\dfrac{2010}{2018}+\dfrac{7}{2018}\right):\dfrac{1}{2}\)
\(=\dfrac{2017}{2018}:\dfrac{1}{2}\)
\(=\dfrac{2017}{2018}\cdot2\)
\(=\dfrac{2017}{1009}\)
a, \(\dfrac{2}{5}\) \(\times\) \(\dfrac{4}{3}\) - \(\dfrac{2}{5}\) : 3
= \(\dfrac{2}{5}\) \(\times\) \(\dfrac{4}{3}\) - \(\dfrac{2}{5}\) \(\times\) \(\dfrac{1}{3}\)
= \(\dfrac{2}{5}\) \(\times\) ( \(\dfrac{4}{3}\) - \(\dfrac{1}{3}\))
= \(\dfrac{2}{5}\) \(\times\) 1
= \(\dfrac{2}{5}\)
b, \(\dfrac{2010}{2018}\) : \(\dfrac{1}{2}\) + \(\dfrac{7}{2018}\) : \(\dfrac{1}{2}\) + \(\dfrac{1}{2018}\) : \(\dfrac{1}{2}\)
= \(\dfrac{2010}{2018}\) \(\times\) \(\dfrac{2}{1}\) + \(\dfrac{7}{2018}\) \(\times\) \(\dfrac{2}{1}\) + \(\dfrac{1}{2018}\) \(\times\) \(\dfrac{2}{1}\)
= \(\dfrac{2}{1}\) \(\times\) ( \(\dfrac{2010}{2018}\) + \(\dfrac{7}{2018}\) + \(\dfrac{1}{2018}\))
= 2 \(\times\) \(\dfrac{2018}{2018}\)
= 2 \(\times\) 1
= 2
\(B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{2018}.\frac{\left(1+2018\right).2018}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{2019}{2}=1+\frac{3+4+...+2019}{2}=1+\frac{\left(3+2019\right)2017}{2}=2039188\)