3/5x7 + 3/7x9 +...+ 3/59x61
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(S=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.60}\right)\)
\(S=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{60}\right)\)
\(S=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{60}\right)\)
\(S=\frac{3}{2}.\left(\frac{12}{60}-\frac{1}{60}\right)\)
\(S=\frac{3}{2}.\frac{11}{60}\)
\(S=\frac{11}{40}\)
\(\frac{3}{5x7}+\frac{3}{7x9}+...+\frac{3}{59x61}\)
\(=\frac{3}{2}\left(\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{59x61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}++...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)
\(\dfrac{6}{5.7}+\dfrac{6}{7.9}+...+\dfrac{6}{59.61}\)
\(=3\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
\(=3\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(=3\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
\(=\dfrac{3.56}{305}\\ =\dfrac{168}{305}\)
Ta có :\(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=2\left(\frac{1}{5}-\frac{1}{61}\right)=2.\frac{56}{305}=\frac{112}{305}\)
P/S : Dấu "." là dấu "x"
Bài làm:
Ta có: \(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\frac{56}{305}=\frac{112}{305}\)
Giải:
\(B=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{48\times50}\)
\(B=\dfrac{3}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{48\times50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\dfrac{47}{150}\)
\(B=\dfrac{47}{100}\)
Chúc em học tốt!
917749738461936926399639748776398646491639394748947630373937366
quá dễ :
A=3/3x5+3/5x7+3/7x9+...+3/97x99
A=3/2.(1/3-1/5+1/5-1/3+...+1/97-1/99)
A=3/2.(1/3-1/99)
A=3/2.32/99
A= 16/33
bài này dễ mà
C1 đặt 3 ra rồi nhân 2
C2 làm tắt nhân bằng phân số luôn thế thôi
\(S=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{2013.2015}\)
\(S=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2013.2015}\right)\)
\(S=\frac{3}{2}.\left(\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{2013}-\frac{2}{2015}\right)\)
\(S=\frac{3}{2}.\left(\frac{2}{5}-\frac{2}{2015}\right)\)
\(S=\frac{3}{2}.\frac{804}{2015}\)
\(S=\frac{1206}{2015}\)
Đặt \(A=\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{59.61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{2}{3}.\left(\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{59.61}\right)\)
\(\Rightarrow\frac{2}{3}.A=\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{59.61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{7-5}{5.7}+\frac{9-7}{7.9}+.....+\frac{61-59}{59.61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{1}{5}-\frac{1}{61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{56}{305}\)
\(\Rightarrow A=\frac{56}{305}:\frac{2}{3}\)
\(\Rightarrow A=\frac{56}{305}.\frac{3}{2}\)
\(\Rightarrow A=\frac{84}{305}\)
Vậy \(\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{59.61}=\frac{84}{305}\)