K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Ak mk bị nhầm tí sorry nha giải tiếp đoạn đó nha

(2x+1)^2+(y-3)^2 = 34 = 5^2 + 9^2

<=> (2x+1)^2 = 5^2 ; (y-3)^2 = 9^2 hoặc (2x+1)^2 = 9^2 ; (y-3)^2 = 5^2

<=> x=2 hoặc x=-3 ; y=12 hoặc y=-6 

   hoặc :

      x=4 ; x=-5 hoặc y=8 ; y=-2

Vậy ............

Tk mk nha

13 tháng 3 2018

pt <=> (4x^2+4x+1)+(y^2-6y+9) = 14

<=>(2x+1)^2 + (y-3)^2 = 14

<=> (2x+1)^2 = 14 - (y-3)^2  < = 14

Mà 2x+1 lẻ nên (2x+1)^2 thuộc {1;9}

+, Với (2x+1)^2 = 1 => (y-3)^2 = 13 => ko tồn tại y thuộc Z

+, Với (2x+1)^2 = 9 => (y-3)^2 = 5 => ko tồn tại y thuộc Z

Vậy ko tồn tại cặp số x,y thuộc Z t/m pt 

Tk mk nha

7 tháng 7 2018

Đáp án: A

8 tháng 8 2017

Câu hỏi của Hà thúy anh - Toán lớp 8 | Học trực tuyến Vừa có ng giải xong

2 tháng 8 2021

a)2x2+4x=19-3y2

⇔2x2+4x+2=21-3y2

⇔2(x+1)2=3(7-y2)Ta có 2(x+1)2⋮2⇒3(7-y2)⋮2

⇒7-y2⋮2

⇒y lẻ (1)

Ta lại có 2(x+1)2≥0

⇒3(7-y2)≥0

⇒7-y2≥0

⇒y2≤7

⇒y2∈{1;4} (2)

Từ (1),(2)⇒y2∈{1}

⇒y∈{-1;1}

Ta có y2=1⇒2(x+1)2=3(7-y2)=18⇒(x+1)2=9

⇒x+1=3 hoặc x+1=-3

⇒x=2 hoặc x=-4

Vậy {x,y}={(-1;2);(-1;-4);(1;2);(1;-4)}

2 tháng 4 2018

 4x2 – 4x + 1 = 0;

a = 4; b = -4; c = 1

Δ = b2 - 4ac = (-4)2 - 4.4.1 = 16 - 16 = 0

⇒ phương trình có nghiệm kép

x = (-b)/2a = (-(-4))/2.4 = 1/2

Vậy phương trình có nghiệm duy nhất x = 1/2

7 tháng 9 2018

Vì \(4x⋮2;6y⋮2;10⋮2\)nên \(-5z⋮2\Rightarrow z⋮2\)(vì (-5;2)=1)

Đặt \(z=2k\left(k\in Z\right)\)

Khi đó: \(4x+6y-5z=10\Leftrightarrow4x+6y-10k=10\Leftrightarrow2x+3y-5k=5\Leftrightarrow2x=5+5k-3y\)

\(\Leftrightarrow x=\frac{5+5k-3y}{2}\Leftrightarrow x=\frac{4+4k-2y+1+k-y}{2}=2+2k-y+\frac{1+k-y}{2}\)

Đặt \(\frac{1+k-y}{2}=t\left(t\in Z\right)\)

\(\Leftrightarrow1+k-y=2t\Leftrightarrow y=1+k-2t\)

Khi đó \(x=2+2k-y+\frac{1+k-y}{2}=2+2k-1-k+2t+t=1+k+3t\)

Vậy x=1+k+3t: y=1+k-2t với \(k,t\in Z\)

22 tháng 12 2020

cho mình hỏi vì sao đặt z=2k thì k thuộc Z 
nếu không thuộc Z thì sao ạ ?

3 tháng 10 2021

\(A=-\left(4x^2-4x+1\right)-\left(y^2+6y+9\right)+11\\ A=-\left(2x-1\right)^2-\left(y+3\right)^2+11\le11\\ A_{max}=11\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)