K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2022

\(4x^2+5y^2=2022\) (1)

-Vì \(4x^2⋮2\) và \(2022⋮2\) nên \(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)

-Đặt \(y=2k\left(k\in Z\right)\) và thay vào (1) ta được:

\(4x^2+5.\left(2k\right)^2=2022\)

\(\Leftrightarrow4x^2+5.4k^2=2022\)

\(\Leftrightarrow4x^2+20k^2=2022\)

\(\Leftrightarrow x^2+5k^2=\dfrac{2022}{4}=505.5\) (vô lý do x,k là các số nguyên)

-Vậy phương trình vô nghiệm.

 

Ta có

\(\left(1+\sqrt{15}\right)^2=16+2\sqrt{15}< 16+2\sqrt{16}=16+8=24\)

Ta lại có \(\sqrt{24}^2=24\)

Vậy \(1+\sqrt{15}< \sqrt{24}\)

Bài làm

Ta có: ( 1 + V15  )2  = 1 + 15 + 2 V15  = 16 + 2V15  

           V24 2 = 24 = 16 + 8

Vì V152  = 15 < 16 = 42 

Nên V15 < 4

=> 2V15  < 8

=> 16 + 2V15  < 24

=>  ( 1 + V15  )2  < V24 2 

Vậy 1 + V15 < V24

# Chúc bạn học tốt #

13 tháng 3 2018

Ak mk bị nhầm tí sorry nha giải tiếp đoạn đó nha

(2x+1)^2+(y-3)^2 = 34 = 5^2 + 9^2

<=> (2x+1)^2 = 5^2 ; (y-3)^2 = 9^2 hoặc (2x+1)^2 = 9^2 ; (y-3)^2 = 5^2

<=> x=2 hoặc x=-3 ; y=12 hoặc y=-6 

   hoặc :

      x=4 ; x=-5 hoặc y=8 ; y=-2

Vậy ............

Tk mk nha

13 tháng 3 2018

pt <=> (4x^2+4x+1)+(y^2-6y+9) = 14

<=>(2x+1)^2 + (y-3)^2 = 14

<=> (2x+1)^2 = 14 - (y-3)^2  < = 14

Mà 2x+1 lẻ nên (2x+1)^2 thuộc {1;9}

+, Với (2x+1)^2 = 1 => (y-3)^2 = 13 => ko tồn tại y thuộc Z

+, Với (2x+1)^2 = 9 => (y-3)^2 = 5 => ko tồn tại y thuộc Z

Vậy ko tồn tại cặp số x,y thuộc Z t/m pt 

Tk mk nha

5 tháng 10 2018

Bạn Hoa giải đúng

Câu 1: 

a) Ta có: 7x+21=0

\(\Leftrightarrow7x=-21\)

hay x=-3

Vậy: S={-3}

b) Ta có: 3x-2=2x-3

\(\Leftrightarrow3x-2-2x+3=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

c) Ta có: 5x-2x-24=0

\(\Leftrightarrow3x=24\)

hay x=8

Vậy: S={8}

Câu 2: 

a) Ta có: \(\left(2x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{2};1\right\}\)

b) Ta có: \(\left(2x-3\right)\left(-x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=7\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};7\right\}\)

c) Ta có: \(\left(x+3\right)^3-9\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-9\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+3-3\right)\left(x+3+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-6\end{matrix}\right.\)

Vậy: S={0;-3;-6}