K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

\(\hept{\begin{cases}x+\sqrt{y}+y\sqrt{x}=30\\x\sqrt{x}+y\sqrt{y}=35\end{cases}}\)

\(\left(x\sqrt{y}+y\sqrt{x}=30\right)+\left(x\sqrt{x}+y\sqrt{y}=35\right)\)

\(\Rightarrow\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)=65\)

\(\left(x\sqrt{x}+y\sqrt{y}=35\right)-\left(x\sqrt{y}+y\sqrt{x}=30\right)\)

\(\Rightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)=5\)

Đặt \(\hept{\begin{cases}a=\sqrt{x}+\sqrt{7}\\b=\sqrt{xy}\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a^2-2b\right)a=65\\\left(a^2-4b\right)a=5\end{cases}}}\)

\(\left[\left(a^22b\right)a=65\right]-\left[\left(a^2-4b\right)a=5\right]\)

\(\Rightarrow2ab=60\Rightarrow ab=30\Rightarrow a^3=125\)

\(\Rightarrow a=5;b=6\)

Vì a = 5 và b = 6

\(\Rightarrow\hept{\begin{cases}\sqrt{x}+\sqrt{y}=5\\\sqrt{xy}=6\end{cases}}\)\(x^2-5x+6=0\)

\(\Rightarrow\left(\sqrt{x};\sqrt{y}\right)\in\left\{\left(2;3\right);\left(3;2\right)\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(9;4\right);\left(4;9\right)\right\}\)

13 tháng 3 2018

ĐK: \(x,y\ge0\)

\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=30\\x\sqrt{x}+y\sqrt{y}=35\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=30\\\left(\sqrt{x}+\sqrt{y}\right).\left[\left(\sqrt{x}+\sqrt{y}\right)^2-3.\sqrt{xy}\right]=35\end{cases}}\)

Đặt \(a=\sqrt{xy}\left(a\ge0\right),b=\sqrt{x}+\sqrt{y}\left(b\ge0\right)\), hệ trở thành : 

\(\hept{\begin{cases}ab=30\\b.\left(b^2-3a\right)=35\end{cases}\Leftrightarrow}\hept{\begin{cases}ab=30\\b^3-3ab=35\end{cases}}\Leftrightarrow\hept{\begin{cases}ab=30\\b^3-3.30=35\end{cases}}\) 

Từ đó tính ra b, rồi tính ra a, rồi tính ra x,y 

giải cái phương trình đầu ra x=-y hoặc x+y=1

sau thay vào pt 2 rồi trâu bò là ra

13 tháng 7 2017

\(\sqrt{x+y}+\sqrt{x-y}=1+\sqrt{\left(x-y\right)\left(x+y\right)}.\\ \left(\sqrt{x+y}-1\right)\left(\sqrt{x-y}-1\right)=0.\)

Chắc bạn cũng biết phải làm gì :))

9 tháng 7 2017

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi

12 tháng 8 2020

\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\left(1\right)\\y^2+x+2y\sqrt{x}-y^2x=0\left(2\right)\end{cases}}\)

đk: x>=0 và x>= y+1

ta có \(\left(1\right)\Leftrightarrow\sqrt{x}=1+\sqrt{x-y-1}\)

\(\Leftrightarrow x=1+x-y-1+2\sqrt{x-y-1}\Leftrightarrow2\sqrt{x-y-1}=y\)

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(x-y-1\right)=y^2\end{cases}\Leftrightarrow\hept{\begin{cases}y\ge0\\4x=\left(y+2\right)^2\end{cases}\Leftrightarrow}\hept{\begin{cases}y\ge0\\\left|y+2\right|=2\sqrt{x}\end{cases}\Leftrightarrow}\hept{\begin{cases}y\ge0\\y+2=2\sqrt{x}\end{cases}}}\)

thay vào (2) \(\left(y+\sqrt{x}\right)^2=\left(y\sqrt{x}\right)^2\)

\(\Leftrightarrow y+\sqrt{x}=y\sqrt{x}\)ta được \(y+\frac{y+2}{2}=y\left(\frac{y+2}{2}\right)\)

\(\Leftrightarrow y^2-y-2=0\Leftrightarrow\orbr{\begin{cases}y=-1\left(loai\right)\\y=2\end{cases}}\)

do đó nghiệm hệ \(\hept{\begin{cases}x=4\\y=2\end{cases}}\)