K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow x+y>=2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2>=0\)(luôn đúng)

Dấu '='xảy ra khi x=y

19 tháng 4 2022

Vì (x-y)\(^2\)≥0 ∀x,y 

<=> x\(^2\)-2xy+y\(^2\)≥0

<=> x\(^2\)+y\(^2\)≥2xy

<=>2(x\(^2\)+y\(^2\))≥(x+y)\(^2\) = 1 (đpcm)

NV
5 tháng 8 2021

\(x^2-\left(y+1\right)x+y^2-y=0\)

\(\Leftrightarrow x^2-\left(y+1\right)x+\dfrac{1}{4}\left(y+1\right)^2-\dfrac{1}{4}\left(y+1\right)^2+y^2-y=0\)

\(\Leftrightarrow\left(x-\dfrac{y+1}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2-1=0\)

\(\Leftrightarrow\dfrac{3}{4}\left(y-1\right)^2-1=-\left(x-\dfrac{y+1}{2}\right)^2\le0\)

\(\Rightarrow\dfrac{3}{4}\left(y-1\right)^2\le1\)

\(\Rightarrow\left(y-1\right)^2\le\dfrac{4}{3}\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:

$(x-y)^2\geq 0$ 

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 2\geq (x+y)^2$

$\Leftrightarrow \sqrt{2}\geq x+y\geq -\sqrt{2}$

Ta có đpcm.

17 tháng 7 2021

mình cảm ơn ạ

22 tháng 4 2021

Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10

                    2009200910 = (10001.2009)10

Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10

Vậy 200920 < 2009200910

15 tháng 1 2018

2. Có : 1/x + 1/y + 1/z = 0

=> 1 + x/y + x/z = 0 => x/y + x/z = -1

Tương tự : y/x + y/z = -1 ; z/x + z/y = -1

=> x/y + x/z + y/x + y/z + z/x + z/y = -3

Lại có : 1/x+1/y+1/z = 0

<=> xy+yz+zx/xyz = 0

<=> xy+yz+zx = 0

Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)

           = xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z

           = xy/z^2+xz/y^2+xy/z^2-3

=> xy/z^2+xz/y^2+xy/z^2 = 3

=> ĐPCM

Tk mk nha

Áp dụng BĐT Cô si ta có: 

\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\)

\(\Rightarrow b+c\ge4a.4bc=16abc\)