Cho tam giác đều ABC, trên BC lấy điểm D . Từ D kẻ các đường thẳng song song với AC và AB chúng cắt AB và AC ở E và F. Gọi H và I lần lượt là trung điểm của BF và CE.C/minh:
a, \(\Delta BDF=\Delta EDC\)
b, \(\Delta DHI\) là tam giác đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Tam giác $ABC$ đều nên \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
Ta có: \(DE\parallel AC\Rightarrow \widehat{BDE}=\widehat{BCA}=60^0\). Kết hợp với \(\widehat{EBD}=\widehat{ABC}=60^0\) suy ra tam giác $EBD$ đều
\(\Rightarrow DE=DB\)
Tương tự $DFC$ cũng là tam giác đều \(\Rightarrow DF=DC\)
Do đó \(\frac{BD}{ED}=\frac{DF}{DC}=1\)
\(\widehat{BDF}=180^0-\widehat{FDC}=180^0-60^0=120^0\)
\(\widehat{EDC}=180^0-\widehat{EDB}=180^0-60^0=120^0\)
\(\Rightarrow \widehat{BDF}=\widehat{EDC}\)
Xét tam giác BDF và EDC có: \(\left\{\begin{matrix} \widehat{BDF}=\widehat{EDC}(\text{cmt})\\ \frac{BD}{ED}=\frac{DF}{DC}\end{matrix}\right.\) \(\Rightarrow \triangle BDF=\triangle EDC\) (c.g.c)
b) Vì \(\triangle BDF\sim \triangle EDC\Rightarrow \left\{\begin{matrix} \widehat{DBF}=\widehat{DEC}\Leftrightarrow \widehat{DBH}=\widehat{DEI}\\ \frac{BD}{ED}=\frac{BF}{EC}=\frac{2BH}{2EI}=\frac{BH}{EI}\end{matrix}\right.\)
Từ hai điều này suy ra \(\triangle BDH\sim \triangle EDI(c.g.c)\)
\(\Rightarrow \frac{DH}{DI}=\frac{BD}{ED}=1\)\(\Rightarrow DH=DI(1)\) và \(\widehat{BDH}=\widehat{EDI}\Leftrightarrow \widehat{BDE}+\widehat{EDH}=\widehat{EDH}+\widehat{HDI}\)
\(\Rightarrow \widehat{BDE}=\widehat{HDI}\Leftrightarrow \widehat{HDI}=60^0(2)\)
Từ (1); (2) suy ra tam giác DHI đều .
a) Xét tứ giác DFCB có
DF//BC
CF//DB
Do đó: DFCB là hình bình hành
Suy ra: \(\widehat{ABC}=\widehat{CFE}\)
Xét ΔABC và ΔCFE có
\(\widehat{ABC}=\widehat{CFE}\)(cmt)
\(\widehat{BAC}=\widehat{FCE}\)(hai góc so le trong, BA//CF)
Do đó: ΔABC\(\sim\)ΔCFE(g-g)
Suy ra: \(\dfrac{AB}{CF}=\dfrac{AC}{CE}\)
hay \(AB\cdot CE=AC\cdot CF\)
b)