Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Tam giác $ABC$ đều nên \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
Ta có: \(DE\parallel AC\Rightarrow \widehat{BDE}=\widehat{BCA}=60^0\). Kết hợp với \(\widehat{EBD}=\widehat{ABC}=60^0\) suy ra tam giác $EBD$ đều
\(\Rightarrow DE=DB\)
Tương tự $DFC$ cũng là tam giác đều \(\Rightarrow DF=DC\)
Do đó \(\frac{BD}{ED}=\frac{DF}{DC}=1\)
\(\widehat{BDF}=180^0-\widehat{FDC}=180^0-60^0=120^0\)
\(\widehat{EDC}=180^0-\widehat{EDB}=180^0-60^0=120^0\)
\(\Rightarrow \widehat{BDF}=\widehat{EDC}\)
Xét tam giác BDF và EDC có: \(\left\{\begin{matrix} \widehat{BDF}=\widehat{EDC}(\text{cmt})\\ \frac{BD}{ED}=\frac{DF}{DC}\end{matrix}\right.\) \(\Rightarrow \triangle BDF=\triangle EDC\) (c.g.c)
b) Vì \(\triangle BDF\sim \triangle EDC\Rightarrow \left\{\begin{matrix} \widehat{DBF}=\widehat{DEC}\Leftrightarrow \widehat{DBH}=\widehat{DEI}\\ \frac{BD}{ED}=\frac{BF}{EC}=\frac{2BH}{2EI}=\frac{BH}{EI}\end{matrix}\right.\)
Từ hai điều này suy ra \(\triangle BDH\sim \triangle EDI(c.g.c)\)
\(\Rightarrow \frac{DH}{DI}=\frac{BD}{ED}=1\)\(\Rightarrow DH=DI(1)\) và \(\widehat{BDH}=\widehat{EDI}\Leftrightarrow \widehat{BDE}+\widehat{EDH}=\widehat{EDH}+\widehat{HDI}\)
\(\Rightarrow \widehat{BDE}=\widehat{HDI}\Leftrightarrow \widehat{HDI}=60^0(2)\)
Từ (1); (2) suy ra tam giác DHI đều .
a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600
=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).
b) Tam giác BPM là tam giác đều (cmt) => PM=BP
Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)
=> BP=AN.
Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA
Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP
=> Tam giác OAN= Tam giác OBP (đpcm)
c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP
Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)
HP=HN => H nằm trên trung trực của NP (2)
Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).