Tìm \(x\)nguyên biết \([\frac{2x-3}{5}]\)\(=-2\)
mọi người giúp mình nha , mình cảm ơn rất nhiều .
mình sẽ k cho. ở đây [ ] là phần nguyên đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có \(A=\frac{x-2}{x+2}\)
\(A=\frac{x+2-4}{x+2}\)
\(A=1-\frac{4}{x+2}\)
Để A > 1
<=> \(1-\frac{4}{x+2}>1\)
<=> \(\frac{4}{x+2}>0\)
<=> \(4>x+2\)
<=> \(2>x\)
<=> \(x< 2\)
Bạn coi lại đáp án câu a/ nha bạn. Mình ra là \(x< 2\).
b/ Để \(A\inℤ\)
<=> \(1-\frac{4}{x+2}\inℤ\)
Mà \(1\inℤ\)
<=> \(-\frac{4}{x+2}\inℤ\)
<=> \(\left(-4\right)⋮\left(x+2\right)\)
<=> \(x+2\in\)Ư (4)
Đến đây bạn giải quyết phần còn lại nhen. Mình lười lắm.
b) Để A có giá trị là số nguyên
Thì (x—2) chia hết cho (x+2)
==> (x+2–4) chia hết cho (x+2)
Vì (x+2) chia hết cho (x+2)
Nên (—4) chia hết cho (x+2)
==> x+2 € Ư(4)
==> x+2 €{1;—1;2;—2;4;—4}
TH1: x+2=1
x=1–2
x=—1
TH2: x+2=—1
x=—1–2
x=—3
TH3: x+2=2
x=2–2
x=0
TH4: x+2=—2
x=—2–2
Xa=—4
TH5: x+2=4
x=4–2
x=2
TH6: x+2=—4
x=—4–2
x=—6
Vậy x€{—1;—3;0;—4;2;—6}
Ta có: 2xy + y = 18 - 2x
=> 2xy + y - 18 + 2x = 0
=> y(2x + 1) + (2x + 1) = 19
=> (y + 1)(2x + 1) = 19
=> y + 1; 2x + 1 \(\in\)Ư(19) = {1; -1; 19; -19}
lập bảng :
2x + 1 | 1 | -1 | 19 | -19 |
y + 1 | 19 | -19 | 1 | -1 |
x | 0 | -1 | 9 | -10 |
y | 18 | -20 | 0 | -2 |
Vậy ...
\(2xy+y=18-2x\)
\(\Leftrightarrow2xy+2x+y+1=17\)
\(\Leftrightarrow2xy+2x+\left(y+1\right)=17\)
\(\Leftrightarrow2x\left(y+1\right)+\left(y+1\right)=17\)
\(\Leftrightarrow\left(y+1\right)\left(2x+1\right)=17\)
\(\Rightarrow\left(y+1\right)\)và \(\left(2x+1\right)\inƯ\left(17\right)=(\pm1:\pm17)\)
Lập Bảng
2x+1 | 1 | 17 | -1 | -17 |
y+1 | 17 | 1 | -17 | -1 |
x | 0 | 8 | -1 | -8 |
y | 16 | 0 | -18 | -2 |
5x2 - 4(x2 - 2x + 1) - 5 = 0
=> 5x2 - 4x2 + 8x - 4 - 5 = 0
=> x2 + 8x - 9 = 0
=> x2 + 9x - x - 9 = 0
=> x(x + 9) - (x + 9) = 0
=> (x + 9)(x - 1) = 0
=> x + 9 = 0 => x = -9
hoặc x - 1 = 0 = > x = 1
Vậy x = -9, x = 1
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\left(5x^2-5\right)-4\left(x^2-2.1.x+1^2\right)=0\)
\(5\left(x^2-1\right)-4\left(x-1\right)^2=0\)
\(5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)\left(x-1\right)=0\)
\(\left[5\left(x+1\right)-4\left(x-1\right)\right]\left(x-1\right)=0\)
\(\left(5x+5-4x+4\right)\left(x-1\right)=0\)
\(\left(x+9\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-9\\x=1\end{cases}}.\)
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
1 . goi UCLN ( 2n + 1,6n + 5 ) la d
=> 2n + 1 chia hết cho d (1)
6n + 5 chia hết cho d (2)
từ (1)=> 6 x ( 2n + 1 ) = 12n + 6 chia hết cho d (3)
từ (2) => 2 x ( 6n + 5 ) = 12n + 10 chia hết cho d (4)
Tu (3) va (4) => ( 12n + 10 ) - (12n + 6 ) chia het cho d
hay 4 chia hết cho d=> d thuộc { 1,2,4}
Mà d là lớn nhất => d = 4
2). 2x + 11 chia hết cho x + 3
(2x + 6 ) + 5 chia het cho x + 3
2 x ( x + 3 ) + 5 chia hết cho x + 3 (1)
Ma 2 x ( x + 3 ) chia het cho x + 3 (2)
Từ (1) và (2) => 5 chia hết cho x + 3
=> X + 3 thước U của 5 hay x + 3 thuộc { 1,5}
x thuộc { -2,2}
Mà x thuộc N => x = 2