chứng minh rằng với mọi số dương n ta luôn có
a, ( n+1)(n+4 ) chia hết cho 2 . HELP ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{n+2}+3^{n+2}-3^n-5^n=5^n\left(5^2-1\right)+3^n\left(3^2-1\right)=5^n.24+3^n.8\)
Ta có \(5^n.24⋮24\) và \(3^n.8⋮3.8=24\)
Vậy ta đc đpcm
5n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.85n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.8
Ta có 5n.24⋮245n.24⋮24 và 3n.8⋮3.8=24 vây ta CM đc cái trên
Ta có:
n3 + 11n
= n3 - n + 12n
= n.(n2 - 1) + 12n
= n.(n - 1).(n + 1) + 12n
= (n - 1).n.(n + 1) + 12n
Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3
Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6
=> n3 + 11n chia hết cho 6 ( đpcm)
\(5^{n+2}+3^{n+2}-3^n-5^n=\left(5^{n+2}-5^n\right)+\left(3^{n+2}-3^n\right)=5^n\left(25-1\right)+3^n\left(9-1\right)\)
\(=5^n.24+3^n.8\)vì: \(n\in N;n\ne0\Rightarrow3^{n-1}\inℕ\)
\(=5^n.24+3^{n-1}.24=24\left(5^n+3^{n-1}\right)⋮24\)
5n + 2 + 3n + 2 - 3n -5n
= 5n. ( 52 -1 ) + 3n . ( 32 - 1 )
= 5n . 24 + 3n . 8
= 5n . 24 + 3n - 1 . 24
= 24 . ( 5n + 3n )
Vì 24\(⋮\)24
Nên 24 . ( 5n + 3n ) \(⋮\)24
Vậy 5n + 2 + 3n + 2 - 3n -5n \(⋮\)24
Ta có \(5^{n+2}+3^{n+2}-3^n-5^n=5^n.25+3^n.9-3^n-5^n\)
\(=5^n.\left(25-1\right)+3^n.\left(9-1\right)\)
\(=5^n.24+3^n.8\)
\(=5^n.24+3^{n-1}.24\)
\(=24.\left(5^n+3^{n-1}\right)⋮24\)( đpcm)
n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9
Vậy với mọi n la só tu nhiên thì n.2+n+1 ko chia hết cho 9
Xét 2 trường hợp
TH1: n chẵn
Mà 4 chẵn
=> n+4 chẵn chia hết cho 2
=> (n+1)(n+4) chia hết cho 2
TH2: n lẻ => n chia hai dư 1
Mà 1 chia 2 dư 1
=> n+1 chia hết cho 2
=> (n+1)(n+4) chia hết cho 2
Vậy với mọi số nguyên dương n thì (n+1)(n+4) chia hết cho 2 (Đpcm)