Tìm GTNN : Q = |2x-3|+2|x-1|+(x-1)^2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hay lắm bạn ơi! Nhưng ở chỗ kết luận sau khi nói bthuc có GTNN là 2006 thì bạn phải tìm ra x,y để bthuc trên đạt GTNN
VD: x^2 + y^2 - 2x + 6y + 2016 có giá trị nhỏ nhất là 2006 đạt được khi x=1; y=-3
Như vậy mới được điểm tối đa
1) Ta có : \(A=2x+\frac{1}{x^2}+\sqrt{2}=x+x+\frac{1}{x^2}+\sqrt{2}\)
Áp dụng bất đẳng thức Cauchy : \(x+x+\frac{1}{x^2}\ge3.\sqrt[3]{x.x.\frac{1}{x^2}}=3\)
\(\Rightarrow A\ge3+\sqrt{2}\). Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{1}{x^2}\Leftrightarrow x=1\)
Vậy A đạt giá trị nhỏ nhất bằng \(3+\sqrt{2}\) tại x = 1
2) Đặt \(y=x+2016\) \(\Rightarrow x=y-2016\)thay vào B :
\(B=\frac{x}{\left(x+2016\right)^2}=\frac{y-2016}{y^2}=-\frac{2016}{y^2}-\frac{1}{y}\)
Lại đặt \(t=\frac{1}{y}\) , \(B=-2016t^2+t=-2016\left(t-\frac{1}{4032}\right)^2+\frac{1}{8064}\le\frac{1}{8064}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{1}{4032}\Leftrightarrow y=4032\Leftrightarrow x=2016\)
Vậy B đạt gá trị lớn nhất bằng \(\frac{1}{8064}\)tại x = 2016
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
Áp dụng BĐT giá trị tuyệt đối: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Ta có:\(M=\left(\left|-x+1\right|+\left|x-3\right|\right)+\left|x-2\right|\ge\left|-x+1+x-3\right|+\left|x-2\right|=2+\left|x-2\right|\ge2\) với mọi x
Do đó MMin=2
\(M=2\Leftrightarrow\int^{\left(-x+1\right).\left(x-3\right)\ge0}_{x=2}\Leftrightarrow\int^{1\le x\le3}_{x=2}\Leftrightarrow x=2\)
Vậy MMin=2 tại x=2