Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có : \(A=\left|x-2\right|+\left|x-5\right|=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
\(\Rightarrow A\ge3\)
Dấu " = " xảy ra khi \(\begin{cases}x-2\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow2\le x\le5\)
Vậy MINA=3 khi \(2\le x\le5\)
b)
Ta có :
\(\begin{cases}\left|x-1\right|+\left|x-2016\right|\ge\left|x-1+2016-x\right|=2015\\\left|x-2\right|+\left|x-2015\right|\ge\left|x-2+2015-x\right|=2013\\...\\\left|x-1008\right|+\left|x-1009\right|\ge\left|x-1008+1009-x\right|=1\end{cases}\)
\(\Rightarrow B\ge1+3+....+2015\)=1016064
Dấu " = " xảy ra khi \(\begin{cases}\begin{cases}x-1\ge0\\2016-x\ge0\end{cases}\\....\\\begin{cases}x-1008\ge0\\1009-x\ge0\end{cases}\end{cases}\)\(\Rightarrow1008\le x\le1009\)
Vậy ...........
A = |x - 2| + |x - 5|
A = |x - 2| + |5 - x|
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) \(\forall x;y\)ta có:
\(A=\left|x-2\right|+\left|5-x\right|\ge\left(x-2\right)+\left(5-x\right)=3\)
Dấu "=" xảy ra khi \(\begin{cases}x-2\ge0\\x-5\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2\\x\le5\end{cases}\)\(\Rightarrow2\le x\le5\)
Vậy GTNN của A là 3 khi \(2\le x\le5\)
B = |x - 1| + |x - 2| + |x - 3| + ... + |x - 2016|
B = |x - 1| + |x - 2| + ... + |x - 1008| + |x - 1009| + |x - 1010| + ... + |x - 2016|
B = |x - 1| + |x - 2| + ... + |x - 1008| + |1009 - x| + |1010 - x| + ... + |2016 - x|
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\forall x;y\) ta có:
\(B=\left|x-1\right|+\left|x-2\right|+...+\left|x-1008\right|+\left|1009-x\right|+\left|1010-x\right|+...+\left|2016-x\right|\)
\(\ge\left(x-1\right)+\left(x-2\right)+...+\left(x-1008\right)+\left(1009-x\right)+\left(1010-x\right)+...+\left(2016-x\right)\)
\(B\ge1008^2=1016064\)
Dấu "=" xảy ra khi \(\begin{cases}x-1\ge0\\1009-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\le1009\end{cases}\)\(\Rightarrow1\le x\le1009\)
Vây GTNN của B là 1016064 khi \(1\le x\le1009\)
Ta có : \(\left|x+2\right|+5\ge5\forall x\)
Nên : \(\frac{1}{\left|x+2\right|+5}\le\frac{1}{5}\)
<=> \(\frac{10}{\left|x+2\right|+5}\le\frac{10}{5}=2\)
Vậy Amax = 2 khi x = -2
Áp dụng BĐT giá trị tuyệt đối: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Ta có:\(M=\left(\left|-x+1\right|+\left|x-3\right|\right)+\left|x-2\right|\ge\left|-x+1+x-3\right|+\left|x-2\right|=2+\left|x-2\right|\ge2\) với mọi x
Do đó MMin=2
\(M=2\Leftrightarrow\int^{\left(-x+1\right).\left(x-3\right)\ge0}_{x=2}\Leftrightarrow\int^{1\le x\le3}_{x=2}\Leftrightarrow x=2\)
Vậy MMin=2 tại x=2
GTNN của M =6