- \(\frac{1}{\sqrt{1+2\sqrt{n-1}}}\)+\(\frac{1}{\sqrt{n-2\sqrt{n-1}}}\)
- \(\frac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1
Khi đó Pt ⇔36√x−2 +4√x−2+4√y−1 +√y−1=28
theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24
và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4
Pt đã cho có VT>= 28 Dấu "=" xảy ra ⇔
36√x−2 =4√x−2⇔x=11
và 4√y−1 =√y−1⇔y=5
Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT
Sửa: \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{x}}< 2\left(\sqrt{x}-1\right)\)
Cần cm: \(\dfrac{1}{\sqrt{k}}< \dfrac{2}{\sqrt{k}+\sqrt{k-1}}\left(k\in N\text{*},k\ge2\right)\)
\(\Leftrightarrow\sqrt{k}+\sqrt{k-1}< 2\sqrt{k}\\ \Leftrightarrow\sqrt{k}>\sqrt{k-1}\\ \Leftrightarrow k>k-1\left(luôn.đúng\right)\)
Áp dụng: \(\dfrac{1}{\sqrt{2}}< \dfrac{2}{\sqrt{2}+\sqrt{1}};...;\dfrac{1}{\sqrt{x}}< \dfrac{2}{\sqrt{x}+\sqrt{x-1}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< \dfrac{2}{\sqrt{2}+\sqrt{1}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}+...+\dfrac{2}{\sqrt{x}+\sqrt{x-1}}\\ \Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< 2\left(\sqrt{2}-\sqrt{1}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{x}-\sqrt{x-1}\right)\\ \Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< 2\sqrt{2}-2+2\sqrt{3}-2\sqrt{2}+...+2\sqrt{x}-2\sqrt{x-1}\\ \Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< 2\sqrt{x}-2=2\left(\sqrt{x}-1\right)\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến