Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
c) \(C=\frac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-\left(\sqrt{x}+2\right)}{x+\sqrt{x}+1}=\)
\(C=\frac{x\sqrt{x}+2x+x+2\sqrt{x}-x\sqrt{x}+1}{\left(\left(\sqrt{x}\right)^3-1\right)\left(\sqrt{x}+1\right)}\times\frac{x+\sqrt{x}+1}{x-1}=\)
\(C=\frac{3x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\times\frac{x+\sqrt{x}+1}{x-1}=\)
\(C=\frac{3x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{1}{x-1}=\)
\(C=\frac{3x+2\sqrt{x}+1}{x-1}\times\frac{1}{x-1}=\frac{3x+2\sqrt{x}+1}{\left(x-1\right)^2}.\)
Sửa: \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{x}}< 2\left(\sqrt{x}-1\right)\)
Cần cm: \(\dfrac{1}{\sqrt{k}}< \dfrac{2}{\sqrt{k}+\sqrt{k-1}}\left(k\in N\text{*},k\ge2\right)\)
\(\Leftrightarrow\sqrt{k}+\sqrt{k-1}< 2\sqrt{k}\\ \Leftrightarrow\sqrt{k}>\sqrt{k-1}\\ \Leftrightarrow k>k-1\left(luôn.đúng\right)\)
Áp dụng: \(\dfrac{1}{\sqrt{2}}< \dfrac{2}{\sqrt{2}+\sqrt{1}};...;\dfrac{1}{\sqrt{x}}< \dfrac{2}{\sqrt{x}+\sqrt{x-1}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< \dfrac{2}{\sqrt{2}+\sqrt{1}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}+...+\dfrac{2}{\sqrt{x}+\sqrt{x-1}}\\ \Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< 2\left(\sqrt{2}-\sqrt{1}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{x}-\sqrt{x-1}\right)\\ \Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< 2\sqrt{2}-2+2\sqrt{3}-2\sqrt{2}+...+2\sqrt{x}-2\sqrt{x-1}\\ \Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< 2\sqrt{x}-2=2\left(\sqrt{x}-1\right)\)