K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ

nên BEDC là tứ giác nội tiếp

b: Xét ΔADB vuông tại D và ΔAEC vuông tạiE có

góc DAB chung

Do đó: ΔADB đồng dạng với ΔAEC

Suy ra: AD/AE=AB/AC

hay AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

Do đó: ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

=>góc ADE=góc DAx

=>Ax//ED

c: Ta có: BEDC là tứ giác nội tiếp

nên góc EBD=góc ECD

a) Xét tứ giác AEHF có

\(\widehat{HEA}+\widehat{HFA}=180^0\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác AEDB có 

\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

12 tháng 9 2017

Ta có:  B O C ^ = 2 B A C ^ ,   C O A ^ = 2 C B A ^ ,   A O B ^ = 2 A C B ^

( góc ở tâm gấp 2 lần số đo góc nội tiếp cùng chắn 1 cung )

S = S O A B + S O B C + S O C A  

=  1 2 O A . O B . sin A O B ^ + 1 2 O B . O C . sin B O C ^ + 1 2 O C . O A . sin C O A ^

S = 1 2 R 2 sin 2 A + sin 2 B + sin 2 C  .

ĐÁP ÁN A

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

11 tháng 4 2022

a. Vì I là trung điểm của AC \(\Rightarrow\) OI \(\perp\) AC ( quan hệ giữa đk và dây )

                                            hay KI \(\perp\) AC

Xét tứ giác CIKH có: góc KIC + góc KHC = 90o + 90o = 180o ( tổng 2 góc đối = 180)

\(\Rightarrow\) tứ giác CIKH nội tiếp ( đpcm )

b. Ta có: góc CBD = góc CAD ( 2 góc nội tiếp cùng chắn cung DC ) (1)

Xét \(\Delta\) AKC có: KI là đường trung tuyến đồng thời là đường cao

\(\Rightarrow\) \(\Delta\) AKC là tam giác cân tại K \(\Rightarrow\) góc CAK = góc ACK

                                                  hay góc CAD = góc ACK (2)

Từ (1), (2) \(\Rightarrow\) góc ACK = góc CBD ( đpcm )

14 tháng 1 2019

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).