Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(a.sin\left(B-C\right)=a.sinBcosC-a.cosB.sinC\)
\(bsin\left(C-A\right)=bsinC.cosA-bcosC.sinA\)
\(csin\left(A-B\right)=csinAcosB-csinB.cosA\)
Cộng lại:
\(VT=cosA\left(bsinC-c.sinB\right)+cosB\left(c.sinA-a.sinC\right)+cosC\left(a.sinB-bsinA\right)\)
\(=cosA\left(\frac{b.c}{2R}-\frac{bc}{2R}\right)+cosB\left(\frac{ac}{2R}-\frac{ac}{2R}\right)+cosC\left(\frac{ab}{2R}-\frac{ab}{2R}\right)=0\)
Câu 2:
\(sin^2A+sin^2B+sin^2C=\frac{1}{2}-\frac{1}{2}cos2A+\frac{1}{2}-\frac{1}{2}cos2B+1-cos^2C\)
\(=2-\frac{1}{2}\left(cos2A+cos2B\right)-cosC.cosC\)
\(=2-cos\left(A+B\right)cos\left(A-B\right)+cosC.cos\left(A+B\right)\)
\(=2+cosC.cos\left(A-B\right)+cosC.cos\left(A+B\right)\)
\(=2+cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)
\(=2+2cosA.cosB.cosC\)
Câu 3:
Ta có \(sin^2\frac{A}{2}=\frac{1-cosA}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-b^2-c^2+2bc}{4bc}=\frac{a^2-\left(b-c\right)^2}{4bc}\)
\(=\frac{\left(a+b-c\right)\left(a+c-b\right)}{4bc}=\frac{\left(p-c\right)\left(p-b\right)}{bc}\Rightarrow sin\frac{A}{2}=\sqrt{\frac{\left(p-b\right)\left(p-c\right)}{bc}}\)
Tương tự ta có \(sin\frac{B}{2}=\sqrt{\frac{\left(p-a\right)\left(p-c\right)}{ac}}\) ; \(sin\frac{C}{2}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)}{ab}}\)
\(\Rightarrow4Rsin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=4\left(\frac{abc}{4S}\right)\sqrt{\frac{\left(p-a\right)^2\left(p-b\right)^2\left(p-c\right)^2}{a^2b^2c^2}}\)
\(=\frac{abc.\left(p-a\right)\left(p-b\right)\left(p-c\right)}{S.abc}=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{S}=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}=r\)
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
- Áp dụng định lý sin ta được :
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow\left\{{}\begin{matrix}sinC=\dfrac{c}{2R}\\sinB=\dfrac{b}{2R}\\sinA=\dfrac{a}{2R}\end{matrix}\right.\)
VT = \(\dfrac{a^2}{2R}+\dfrac{b^2}{2R}+\dfrac{c^2}{2R}=\dfrac{a^2+b^2+c^2}{2R}\)
Lại có \(\left\{{}\begin{matrix}m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\\....\end{matrix}\right.\)
\(\Rightarrow VP=\dfrac{b^2+c^2+c^2+a^2+a^2+b^2-\dfrac{a^2}{2}-\dfrac{b^2}{2}-\dfrac{c^2}{2}}{3R}\)
\(=\dfrac{\dfrac{3}{2}\left(a^2+b^2+c^2\right)}{3R}=\dfrac{a^2+b^2+c^2}{2R}=VT\)
=> ĐPCM
Ta có: B O C ^ = 2 B A C ^ , C O A ^ = 2 C B A ^ , A O B ^ = 2 A C B ^
( góc ở tâm gấp 2 lần số đo góc nội tiếp cùng chắn 1 cung )
S = S O A B + S O B C + S O C A
= 1 2 O A . O B . sin A O B ^ + 1 2 O B . O C . sin B O C ^ + 1 2 O C . O A . sin C O A ^
S = 1 2 R 2 sin 2 A + sin 2 B + sin 2 C .
ĐÁP ÁN A