Cho tứ giác lồi ABCD. Gọi M;N;P;Q lần lượt là trung điểm của AB; BC;CD;DA.Chứng minh rằng:
a) véc tơ MP=1/2.(véc tơ AD+ véc tơ BC)
b) Hai tam giác ANP và CMQ có cùng trọng tâm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tra gu gồ được mà,hỏi làm gì cho mệt chớ,tìm được cách làm trên gu gồ là áp dụng vào bài thôi
noi A vs C ,BvsC
ap dung tinh chat duong trug binh cua tam giac
AM=EN
MN=FE
MNEF la hinh thoi
Đáp án A
+) M là trọng tâm của tam giác SAB nên giao điểm P của SM và AB là trung điểm của AB.
Suy ra SM = 2/3 SP ⇒ S M S P = 2 3
N là trọng tâm của tam giác SAD nên giao điểm Q của SN và AD là trung điểm của AD
Suy ra SN = 2/3 SQ ⇒ S N S Q = 2 3
Xét tam giác SPQ có S M S P = S N S Q = 2 3 nên MN // PQ (1) (định lý Ta-lét)
Do đó đáp án A đúng.
+) Xét tam giác IBD có
I M I B = 1 3 (tam giác SAB có I là trung điểm của SA và M là trọng tâm)
I N I D = 1 3 (tam giác SAD có I là trung điểm của SA và N là trọng tâm)
Do đó I M I B = I N I D = 1 3 nên MN // BD
Suy ra đáp án B, C, D sai.
Chọn đáp án A
Nối BC và AD kéo dài cắt nhau tại F
\(\Rightarrow SF=\left(SBC\right)\cap\left(SAD\right)\)
Trong mp (SCD), nối CM kéo dài cắt SD tại G
\(\Rightarrow AG=\left(AMC\right)\cap\left(SAD\right)\)
Trong mp (SCD), nối SM kéo dài cắt CD tại E
\(\Rightarrow AE=\left(SAM\right)\cap\left(ABCD\right)\)
Trong mp (ABCD), nối BE cắt AC tại H
\(\Rightarrow SH=\left(SBM\right)\cap\left(SAC\right)\)
Ta có : Tứ giác MPNQ là hình bình hành
MN và PQ cắt nhau tại trung điểm I của mỗi đường
Ta có : Tứ giác EPFQ là hình bình hành
EF đi qua I
Vậy EF , MN và PQ đồng quy