1) Tìm A;B thỏa : \(\begin{cases}A=\overline{abcd}=k^2\\B=\overline{abcd}+1111=h^2\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)
c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)
\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Thay x=36 vào A, ta được:
\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)
c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)
\(\Leftrightarrow4\sqrt{x}=2\)
hay \(x=\dfrac{1}{4}\)
1: Để A>0 thì x-1<0
hay x<1
Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)
1) Để A > 0 thì:
\(x-1< 0\Leftrightarrow x< 1\)
\(\Rightarrow0\le x< 1\) và \(x\ne1\)
2) \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)
Để A<1 thì \(\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Rightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Mà x\(\ge0,x\ne1\)
\(\Rightarrow0\le x< 1\)
\(A=\frac{a}{a-1}-\frac{a}{a+1}+a^2-1\left(đk:a\ne\pm1\right)\)
\(=\frac{a\left(a+1\right)}{a^2-1}-\frac{a\left(a-1\right)}{a^2-1}+a^2-1\)
\(=\frac{a^2+a-a^2+a}{a^2-1}+a^2-1\)
\(=\frac{2a}{a^2-1}+a^2-1\)
Bài làm:
a) đkxđ: \(\hept{\begin{cases}a-1\ne0\\a+1\ne0\\a^2-1\ne0\end{cases}}\Rightarrow\hept{\begin{cases}a\ne1\\a\ne-1\end{cases}}\)
b) Sửa đề:
\(A=\frac{a}{a-1}-\frac{a}{a+1}+\frac{2}{a^2-1}\)
\(A=\frac{a}{a-1}-\frac{a}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\)
\(A=\frac{a\left(a+1\right)-a\left(a-1\right)+2}{\left(a-1\right)\left(a+1\right)}\)
\(A=\frac{a^2+a-a^2+a+2}{\left(a-1\right)\left(a+1\right)}\)
\(A=\frac{2a+2}{\left(a-1\right)\left(a+1\right)}=\frac{2\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
\(A=\frac{2}{a-1}\)
=> đpcm
c) \(A\inℤ\Rightarrow\frac{2}{a-1}\inℤ\Rightarrow\left(a-1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow a\in\left\{-1;0;2;3\right\}\)
Mà \(a\ne-1\left(đkxd\right)\Rightarrow a\in\left\{0;2;3\right\}\)
d) Ta có: \(A\ge1\)
\(\Leftrightarrow\frac{2}{a-1}-1\ge0\)
\(\Leftrightarrow\frac{3-a}{a-1}\ge0\)
+ Nếu: \(\hept{\begin{cases}3-a\ge0\\a-1>0\end{cases}}\Rightarrow\hept{\begin{cases}3\ge a\\a>1\end{cases}}\Rightarrow1< a\le3\)
+ Nếu: \(\hept{\begin{cases}3-a\le0\\a-1< 0\end{cases}}\Rightarrow\hept{\begin{cases}a\ge3\\a< 1\end{cases}}\) (vô lý)
Vậy khi \(1< a\le3\) thì \(A\ge1\)
a: Để A là phân số thì n+5<>0
hay n<>-5
b: Để A=-1/2 thì n-1/n+5=-1/2
=>2n-2=-n-5
=>3n=-3
hay n=-1
c: Để A là số nguyên thì \(n-1⋮n+5\)
\(\Leftrightarrow n+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)
Bài 1 :
a) \(ĐKXĐ:x\ne1\)
\(A=\left(\frac{3}{x^2-1}+\frac{1}{x+1}\right):\frac{1}{x+1}\)
\(\Leftrightarrow A=\frac{3+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\)
\(\Leftrightarrow A=\frac{x+2}{x-1}\)
b) Thay x = \(\frac{2}{5}\)vào A ta được :
\(A=\frac{\frac{2}{5}+2}{\frac{2}{5}-1}=\frac{\frac{12}{5}}{-\frac{3}{5}}=-4\)
c) Để \(A=\frac{5}{4}\)
\(\Leftrightarrow\frac{x+2}{x-1}=\frac{5}{4}\)
\(\Leftrightarrow4x+8=5x-5\)
\(\Leftrightarrow x=13\)
d) Để \(A>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}-\frac{1}{2}>0\)
\(\Leftrightarrow2x+4-x+1>0\)
\(\Leftrightarrow x+5>0\)
\(\Leftrightarrow x>-5\)
Bài 2 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(A=\frac{x^2}{x^2+x}-\frac{1-x}{x+1}\)
\(A=\frac{x}{x+1}+\frac{x-1}{x+1}\)
\(\Leftrightarrow A=\frac{2x-1}{x+1}\)
b) Để \(A=1\)
\(\Leftrightarrow\frac{2x-1}{x+1}=1\)
\(\Leftrightarrow2x-1=x+1\)
\(\Leftrightarrow x=2\)
b) Để \(A< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}-2< 0\)
\(\Leftrightarrow2x-1-2x-1< 0\)
\(\Leftrightarrow-2< 0\)(luôn đúng)
Vậy A < 2 <=> mọi x
Ta có:
B - A = (abcd + 1111) - abcd = h2 - k2
=> B - A = 1111 = (h - k).(h + k)
=> B - A = 11.101 = (h - k).(h + k)
Mà 11 và 101 là số nguyên tố; h - k < h + k
\(\Rightarrow\begin{cases}h-k=11\\h+k=101\end{cases}\)\(\Rightarrow\begin{cases}k=\left(101-11\right):2=45\\h=45+11=56\end{cases}\)
=> \(\begin{cases}A=45^2=2025\\B=56^2=3136\end{cases}\)
Vậy A = 2025; B = 3136