Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
b) Ta có: \(M=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\dfrac{a-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{\sqrt{a}\left[\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right]}{2\sqrt{a}}\)
\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}\)
\(=\dfrac{-4\sqrt{a}}{2}=-2\sqrt{a}\)
c) Để M=-4 thì \(-2\sqrt{a}=-4\)
\(\Leftrightarrow\sqrt{a}=2\)
hay a=4(thỏa ĐK)
Lời giải:
ĐK: $x>0; a\neq 1; a\neq 4$
a)
$M=\frac{\sqrt{a}-(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}-1)}:\frac{(\sqrt{a}+1)(\sqrt{a}-1)-(\sqrt{a}-2)(\sqrt{a}+2)}{(\sqrt{a}-2)(\sqrt{a}-1)}$
$=\frac{1}{\sqrt{a}(\sqrt{a}-1)}:\frac{3}{(\sqrt{a}-2)(\sqrt{a}-1)}=\frac{1}{\sqrt{a}(\sqrt{a}-1)}.\frac{(\sqrt{a}-2)(\sqrt{a}-1)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}$
b)
$M>\frac{-1}{2}\Leftrightarrow \frac{\sqrt{a}-2}{3\sqrt{a}}+\frac{1}{2}>0$
$\Leftrightarrow \frac{5\sqrt{a}-4}{6\sqrt{a}}>0$
$\Leftrightarrow 5\sqrt{a}-4>0$
$\Leftrightarrow a>\frac{16}{25}$
Kết hợp với ĐKXĐ thì $a>\frac{16}{25}; a\neq 1; a\neq 4$
a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a)
\(A=\frac{x+\sqrt{x}+1}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{(\sqrt{x}-1)(x+1)}\right]\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{(\sqrt{x}-1)(x+1)}=\frac{x+\sqrt{x}+1}{x+1}.\frac{(\sqrt{x}-1)(x+1)}{(\sqrt{x}-1)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b)
\(A=7\Leftrightarrow x+\sqrt{x}+1=7(\sqrt{x}-1)\)
\(\Leftrightarrow x-6\sqrt{x}+8=0\Leftrightarrow (\sqrt{x}-2)(\sqrt{x}-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=4\\ x=16\end{matrix}\right.\) (đều thỏa mãn)
c)
\(x=2(2+\sqrt{3})=4+2\sqrt{3}=3+1+2\sqrt{3.1}=(\sqrt{3}+1)^2\Rightarrow \sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\frac{4+2\sqrt{3}+\sqrt{3}+1+1}{\sqrt{3}}=\frac{6+3\sqrt{3}}{\sqrt{3}}=3+2\sqrt{3}\)
d)
\(A< 1\Leftrightarrow \frac{x+\sqrt{x}+1}{\sqrt{x}-1}-1<0\Leftrightarrow \frac{x-2\sqrt{x}+2}{\sqrt{x}-1}<0\)
\(\Leftrightarrow \frac{(\sqrt{x}-1)^2+1}{\sqrt{x}-1}<0\Leftrightarrow \sqrt{x}-1< 0\Leftrightarrow 0\leq x< 1\)
Sửa đề: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{1;4\right\}\end{matrix}\right.\)
Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a+3\sqrt{a}+2-a+3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{6\sqrt{a}}\)
\(=\dfrac{a-4}{6a\left(\sqrt{a}-1\right)}\)
c) Thay \(a=9-4\sqrt{5}\) vào Q, ta được:
\(Q=\dfrac{5-4\sqrt{5}}{6\left(9-4\sqrt{5}\right)\left(\sqrt{5}-3\right)}\)
\(=\dfrac{5-4\sqrt{5}}{6\left(9\sqrt{5}-27-20+12\sqrt{5}\right)}\)
\(=\dfrac{5-4\sqrt{5}}{6\left(21\sqrt{5}-47\right)}\)
\(=\dfrac{\left(5-4\sqrt{5}\right)\left(21\sqrt{5}+47\right)}{-24}\)
\(=\dfrac{105\sqrt{5}+235-420-188\sqrt{5}}{-24}\)
\(=\dfrac{-83\sqrt{5}-185}{-24}=\dfrac{83\sqrt{5}+185}{24}\)
Bài 1:
a) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b) Để Q dương thì \(\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)
mà \(3\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ
nên \(\sqrt{a}-2>0\)
\(\Leftrightarrow\sqrt{a}>2\)
hay a>4
Kết hợp ĐKXĐ,ta được: a>4
Vậy: Để Q dương thì a>4