Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để A+B= 19 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Kiến thức bổ sung: Dạng toán tìm GTLN, GTNN của hàm số y = |u(x)| trên đoạn [a;b]
Gọi M, m lần lượt là GTLN, GTNN của hàm số u(x) trên đoạn [a;b]
Đặt:
Ta có:
Suy ra:
TH1: (loại)
(vì ko thỏa mãn giả thiết Aa = 12)
TH2:
Từ giả thiết: Aa = 12
TH3:
Từ giả thiết: Aa = 12
Kết hợp các trường hợp suy ra: S = {-4;4}
Vậy tổng các phần tử của bằng: (-4) + 4 = 0.
+ Xét hàm số y= x4- 4x3+ 4x2+ a trên đoạn [ 0; 2].
Ta có đạo hàm y’ = 4x3-12x2+ 8x, y ' = 0
Khi đó; y( 0) = y( 2) = a; y( 1) = a+ 1
+ Nếu a≥ 0 thì M= a+ 1,m = a.
Để M ≤ 2m khi a≥ 1, suy ra a ∈ 1 ; 2 ; 3 thỏa mãn
+ Nếu a≤ - 1 thì M = a = - a , m = a + 1 = - a - 1 .
Để M≤ 2m thì a≤ -2, suy ra a a ∈ - 2 ; - 3
Vậy có 5 giá trị nguyên của a thỏa mãn yêu cầu.
Chọn B.
Chọn A
ĐK: x ≥ 0
Xét trên 0 ; 3 ta có f ' x = 1 - 1 2 x = 0
⇔ x = 1 4 ∈ 0 ; 3
Ta có:
Suy ra M = m a x y 0 ; 3 = f 3 = 3 - 3
m = m i n y 0 ; 3 = f 1 4 = - 1 4
Nên M + 2 m ≈ 0 , 768
Chọn A.