K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

Đặt ƯCLN(2n+5,3n+7) = d

Ta có:  \(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

\(\Rightarrow6n+15-6n-14⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow UCLN\left(2n+5,3n+7\right)=1\)

\(\Rightarrowđpcm\)

14 tháng 11 2017

Đặt : ƯCLN(2n+5,2n+4)=d

Ta có: (2n+5)\(⋮\)d và (2n+4) \(⋮\)d

\(\Rightarrow\)(2n+5) - (2n+4)\(⋮\)d

\(\Leftrightarrow\)2n+5 - 2n-4 \(⋮\)d

\(\Leftrightarrow\)5 - 4 \(⋮\)d

\(\Leftrightarrow\)1\(⋮\)d

\(\Leftrightarrow\)d = 1

Vậy: ƯCLN (2n+5,2n+4) = 1(đpcm)

kb vs mk nha

20 tháng 6 2015

Phân tích ra ta được: 4n2 +4n+1+8n+9

                          =  4n2+4n+8n+10

                          =4n(n+1) +8n + 8  +2

   mà 4n(n+1) chia hết cho 8 (n(n+1) là tích của hai số tự nhiên liên tiếp); 8n và 8 chiaheets cho 8. Vậy còn dư 2

Nên biểu thức không chia hết cho 8 với mọi n

12 tháng 8 2016

Ta có : \(2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

=> \(-5n^2-5n=-5\left(n^2+n\right)\)Như vậy luôn chia hết cho 5 với mọi n

6 tháng 1 2016

Bài giải

Ta có:22n+1=(22)n.2=4n.2

  32n+1=(32)n.3=9n.3

Ta lại có:9 đồng dư với 4(mod 5)

=>9n​ đồng dư với 4n(mod 5)

=>4n.2+9n​.3 đông du với 4n.2+4n.3=4n.(2+3)=4n.5

=>22n+1+32n+1​ đông du với 4n.5

=>22n+1+32n+1 chia hết cho 5

 

Ta có: \(\left(2n+5\right)^2-25\)

\(=\left(2n+5-5\right)\left(2n+5+5\right)\)

\(=4n\left(n+5\right)⋮n\)

18 tháng 6 2016

A= n(2n-3)-2n(n+1)

A= 2n2-3n-2n2-2n

A=-5n

vì -5 chia hết cho 5

Nên -5n chia hết cho 5

hay A chia hết cho 5 với n thuộc z

6 tháng 6 2017

Ngọc Anh

Ta có : 
n (2n - 3 ) - 2n ( n + 1 ) 
= 2n2 - 3n - 2- 2n 
= -5n luôn chia hết cho 5 với mọi n thuộc Z 
Vậy n (2n - 3) - 2n (n + 1 )  luôn chia hết cho 5 với mọi số nguyên n

6 tháng 6 2017

Ta có:

n(2n-3)-2n(n+1)

=2n2-3n-22-2n

=-5n luôn chia hết cho 5 với mọi n thuộc Z

Vậy n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n

30 tháng 12 2016

Bài 1 

Tách n thành 2 dạng 2k +1 (lẻ) và 2k (chẵn)

Với trường hợp 2k + 1 (lẻ) ,ta có :

(n + 4)(n + 5) 

= (2k + 1 + 4)(2k + 1 + 5)

= (2k + 5)(2k + 6)

= (2k + 5).2.(k + 3)    chia hết cho 2    (1)

Với trường hợp 2k (chẵn) ,ta có :

(n + 4)(n + 5) 

= (2k + 4)(2k + 5) 

= 2.(k + 2)(2k + 5) chia hết cho 2    (2)

Từ 1 và 2 

=> Với mọi x , thì (n + 4)(n + 5) chia hết cho 2 

30 tháng 12 2016

BẠN TỐT ĐẤY THẾ CÒN BÀI HAI THÌ SAO