Viết phương trình đường thẳng đi qua gốc toạ độ O(0;0) cắt đường tròn x2 + y2 − 2x −8y −8 = 0 tại A, b sao cho OB = 2BA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow-3\left(m-2\right)+2=1\Leftrightarrow m=\dfrac{7}{3}\)
\(b,\) Gọi \(A\left(x_0;y_0\right)\) là điểm cần tìm
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\\ \Leftrightarrow mx_0-2x_0-y_0+2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\-2x_0-y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cần tìm
\(e,\) PT giao Ox: \(y=0\Leftrightarrow\left(m-2\right)x=-2\Leftrightarrow x=\dfrac{-2}{m-2}\Leftrightarrow A\left(-\dfrac{2}{m-2};0\right)\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)
PT giao Oy: \(x=0\Leftrightarrow y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\)
Để \(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA\cdot OB=2\Leftrightarrow\dfrac{2}{\left|m-2\right|}\cdot\dfrac{1}{2}\cdot2=2\)
\(\Leftrightarrow\dfrac{2}{\left|m-2\right|}=2\Leftrightarrow\left|m-2\right|=1\Leftrightarrow\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\) thỏa yêu cầu đề
a: Vì (d)//y=2x+4 nên m=2
Vậy: (d): y=2x+3-2n
Thay x=1 và y=2 vào (d), ta được:
5-2n=2
hay n=3/2
Phương trình đườn thẳng (d) sẽ có dạng là: (d): y=ax+b(a≠0)
Ta có: 2x-y+3=0
\(\Leftrightarrow-y+2x+3=0\)
\(\Leftrightarrow-y=-2x-3\)
\(\Leftrightarrow y=2x+3\)
Vì (d) có cùng hệ số góc với đường thẳng 2x-y+3=0 nên a=2
hay (d): y=2x+b
Vì (d) đi qua A(-2;3) nên Thay x=-2 và y=3 vào hàm số y=2x+b, ta được:
\(2\cdot\left(-2\right)+b=3\)
\(\Leftrightarrow b-4=3\)
hay b=7
Vậy: (d): y=2x+7
a) -△ABC và △HAC có: \(\widehat{BAC}=\widehat{AHC}=90^0\); \(\widehat{C}\) là góc chung.
\(\Rightarrow\)△ABC∼△HAC (g-g)
b)\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\Rightarrow AC^2=BC.CH=13.4=52\Rightarrow AC=\sqrt{52}\left(cm\right)\)
c) \(\widehat{AHE}=90^0-\widehat{AHF}=\widehat{CHF}\).
-△AHE và △CHF có: \(\widehat{AHE}=\widehat{CHF}\); \(\widehat{HAE}=\widehat{HCF}\) (△ABC∼△HAC)
\(\Rightarrow\)△AHE∼△CHF (g-g) \(\Rightarrow\dfrac{AH}{CH}=\dfrac{AE}{CF}\Rightarrow AE.CH=AH.FC\).
d) -Gọi G là giao của AB và HF.
-△GAF và △GHE có: \(\widehat{GAF}=\widehat{GHE}=90^0\); \(\widehat{G}\) là góc chung.
\(\Rightarrow\)△GAF∼△GHE (g-g) \(\Rightarrow\dfrac{GA}{GH}=\dfrac{GF}{GE}\Rightarrow\dfrac{GA}{GF}=\dfrac{GH}{GE}\)
-△GEF và △GHA có: \(\dfrac{GA}{GF}=\dfrac{GH}{GE}\); \(\widehat{G}\) là góc chung.
\(\Rightarrow\)△GEF∼△GHA (c-g-c) \(\Rightarrow\widehat{GFE}=\widehat{GAH}\).
\(\widehat{GAH}=90^0-\widehat{CAH}=\widehat{ACB}\Rightarrow\widehat{GFE}=\widehat{ACB}\).
-△HEF và △ABC có: \(\widehat{EHF}=\widehat{BAC}=90^0;\widehat{HFE}=\widehat{ACB}\).
\(\Rightarrow\)△HEF∼△ABC (g-g) \(\Rightarrow\dfrac{S_{HEF}}{S_{ABC}}=\dfrac{HE}{AB}\Rightarrow S_{HEF}=\dfrac{HE}{AB}.S_{ABC}\)
-Qua H kẻ đg thẳng vuông góc với AB tại E' \(\Rightarrow HE\ge HE'\)
\(\Rightarrow S_{HEF}\ge\dfrac{HE'}{AB}.S_{ABC}\).
-\(S_{HEF}\) có diện tích nhỏ nhất \(\Leftrightarrow E\equiv E'\Leftrightarrow\)E là hình chiếu của H lên AB.
tội nghiệp, k ai trả lời