K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

\(a,\Leftrightarrow-3\left(m-2\right)+2=1\Leftrightarrow m=\dfrac{7}{3}\)

\(b,\) Gọi \(A\left(x_0;y_0\right)\) là điểm cần tìm

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\\ \Leftrightarrow mx_0-2x_0-y_0+2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\-2x_0-y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cần tìm

15 tháng 11 2021

\(e,\) PT giao Ox: \(y=0\Leftrightarrow\left(m-2\right)x=-2\Leftrightarrow x=\dfrac{-2}{m-2}\Leftrightarrow A\left(-\dfrac{2}{m-2};0\right)\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)

PT giao Oy: \(x=0\Leftrightarrow y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\)

Để \(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA\cdot OB=2\Leftrightarrow\dfrac{2}{\left|m-2\right|}\cdot\dfrac{1}{2}\cdot2=2\)

\(\Leftrightarrow\dfrac{2}{\left|m-2\right|}=2\Leftrightarrow\left|m-2\right|=1\Leftrightarrow\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\) thỏa yêu cầu đề

16 tháng 11 2021

a: Vì (d)//y=2x+4 nên m=2

Vậy: (d): y=2x+3-2n

Thay x=1 và y=2 vào (d), ta được:

5-2n=2

hay n=3/2

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:

a. Để hàm số nghịch biến trên R thì:

$a+2<0$

$\Leftrightarrow a< -2$

b.

Để $(d)$ đi qua $M(-1;-4)$ thì:

$y_M=(a+2)x_M-a+1$

$\Leftrightarrow -4=(a+2)(-1)-a+1$

$\Leftrightarrow a=\frac{3}{2}$

a: \(d\left(O;d\right)=\dfrac{\left|\left(2m-3\right)\cdot0+\left(-1\right)\cdot0-1\right|}{\sqrt{\left(2m-3\right)^2+1}}=\dfrac{1}{\sqrt{\left(2m-3\right)^2+1}}\)

Để d lớn nhất thì \(\sqrt{\left(2m-3\right)^2+1}_{MIN}\)

=>m=3/2

b: Gọi A,B lần lượt là giao của (d) với Ox,Oy

=>A(1/2m-3; 0); B(0;-1)

=>OA=1/|2m-3|; OB=1

Theo đề, ta có: 1/2*OA*OB=3

=>1/|2m=3|=3:1/2=6

=>|2m-3|=1/6

=>2m-3=1/6 hoặc 2m-3=-1/6

=>2m=19/6 hoặc 2m=17/6

=>m=19/12 hoặc m=17/12