K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(a,A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}-\frac{2}{1-x}\right)\)

\(=\left(\frac{x.\sqrt{x}}{x.\left(\sqrt{x}-1\right)}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{1-x}-\frac{2}{1-x}\right)\)

\(=\frac{x.\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}.\frac{1-x}{-\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(x.\sqrt{x}-1\right)\left(1-x\right)}{x\left(1-x\right)}=\frac{\sqrt{x^3}-1}{x}\)

\(b,\)\(A=\frac{\sqrt{x}^3-1}{x}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}\)

Để A > 0 \(\Rightarrow\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}>0\)

Mà \(x>0\)và \(x+\sqrt{x}+1>0\)( do x lớn hơn 0 )

\(\Rightarrow\sqrt{x}-1>0\)

\(\Rightarrow\sqrt{x}>1\Leftrightarrow\sqrt{x}>\sqrt{1}\Leftrightarrow x>1\)

9 tháng 5 2021

\(x\ge0\)

\(A=x-3+\left|6x\right|=x-3+6x=7x-3\)

\(x< 0\)

\(A=x-3+\left|6x\right|=x-3+6\cdot\left(-x\right)=-5x-3\)

 

9 tháng 5 2021

`x>= 0 => A = 5x-1-3x=2x-1`

`x<0 => A=5x-1+3x=8x-1`

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) a) Tính giá trị biểu thức A khi x = 9b) Tìm x để A = 3 c) Tìm giá trị nhỏ nhất của A 2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)b) Tìm x để B có giá trị âmc) Tìm giá trị nhỏ nhất của B 3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 a) Tìm x để C = 7b) Tìm x để C...
Đọc tiếp

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) 

a) Tính giá trị biểu thức A khi x = 9

b) Tìm x để A = 3 

c) Tìm giá trị nhỏ nhất của A 

2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) 

a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)

b) Tìm x để B có giá trị âm

c) Tìm giá trị nhỏ nhất của B 

3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 

a) Tìm x để C = 7

b) Tìm x để C > 6 

c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\) 

4) Cho biểu thức D =  \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1 

a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0 

b) Tìm x để D có giá trị là \(\dfrac{1}{2}\) 

c) Tìm x để D có giá trị nguyên

5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9 

a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\) 

b) Tìm điều kiện của x để E < 1 

c) Tìm x nguyên để E có giá trị nguyên 

2

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

7 tháng 9 2021

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

18 tháng 1 2022

a,ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\\x^2-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\\x\ne\pm3\end{matrix}\right.\Leftrightarrow x\ne\pm3\)

b, \(M=\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}-\dfrac{36}{x^2-9}\)

\(\Rightarrow M=\dfrac{\left(x+3\right)^2-\left(x-3\right)^2-36}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow M=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow M=\dfrac{12\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow M=\dfrac{12}{x+3}\)

c, Thay x=0 vào M ta có: \(M=\dfrac{12}{x+3}=\dfrac{12}{0+3}=\dfrac{12}{3}=4\)

a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

b: \(M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12}{x+3}\)

c: Thay x=0 vào M, ta được:

\(M=\dfrac{12}{0+3}=\dfrac{12}{3}=4\)

a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

b: \(M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12}{x+3}\)

c: Thay x=0 vào M, ta được: M=12/3=4

a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

b: \(M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12}{x+3}\)

c: Thay x=0 vào M, ta được:

M=12/3=4

29 tháng 3 2019