Chứng minh rằng không tồn tại đa thức P(x) có hệ số nguyên thoả mãn P(9)=2^2022 ; P(2)=6^202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 40320f=2012
362880f=2072
=> ko tồn tại nghiệm số thực
=>đpcm
http://pitago.vn/question/chung-minh-rang-khong-ton-tai-da-thuc-fx-co-cac-he-so-5299.html
<=>40320f=2012,362880f=2072
=>f thuộc {rỗng} ko tồn tại nghiệm thực
=>đpcm
Ta có :
f(9!)-f(8!)=an.((9!)n-(8!)n)+an-1.((9!)n-1-(8!)n-1)+....+a1.(9!-8!)
=2072-2012=60
Ta nhận thấy 9!=1.2.3.4.5.6.7.8.9 và 8 ! = 1.2.3.4.5.6.7.8 nên vế trái của đẳng thức chia hết cho 7,nhưng vế trái = 60 không chia hết cho 7 => Không tồn tại đa thức f(x) có các hệ số nguyên mà f(8!)=2012 và f(9!)=2072
mình nghĩ là làm như vầy, bạn xem thử nha
ta thay p(1)=23 và p(23)=84 lần lượt vào p(x)=ax+b
ta sẽ có: p(1)=1a+b=23
p(23)=23a+b=84
=> -22a =-61 (BẠN GIẢI HỆ PT NHÉ)
=> a=61/22
vì theo đề cho hệ số P(x) nguyên mà a=61/22( không nguyên)
=> không tồn tại một đa thức với hệ số nguyên P(x) thỏa mãn P(1)=23 và P(23)=84
Ta có: 8!-38308=12
Vậy f(x)=x-38308
Thay x=9! , ta có: f(9!)=362880-38308=324572 khác 2072
Vậy đa thức f(x) không tồn tại