Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I agree with 'lien hoang' 's opinion.He needs the solution,not the answer.
Mình đồng ý với liên hoàng.Bạn đó cần lời giải chứ không cần đáp số.Có phải toán trắc nghiệm đâu!
Ta có:
\(2020\equiv1\left(mod3\right)\)\(\Rightarrow2020^{2020}\equiv1\left(mod3\right)\)
\(\Rightarrow2020^{2020}+1\equiv2\left(mod3\right)\)
Lại có:
\(n^3+2018n=n\left(n^2+2018\right)\)
\(+\)Nếu n chia hết cho 3 thì \(n\left(n^2+2018\right)⋮3\)
+) Nếu \(n⋮̸3\)thì \(n^2+2018⋮3\)
Do đó n(n^2+2018) luôn chia hết cho 3
Vậy....
Sử dụng quy tắc đa thức: \(P\left(a\right)-P\left(b\right)\) chia hết \(a-b\) cho đa thức hệ số nguyên
Do a;b;c;d lẻ nên hiệu của chúng đều chẵn
\(P\left(c\right)-P\left(a\right)=4\Rightarrow4⋮c-a\Rightarrow\left[{}\begin{matrix}c-a=-2\\c-a=-4\end{matrix}\right.\)
Tương tự ta có \(\left[{}\begin{matrix}b-a=-2\\b-a=-4\end{matrix}\right.\)
Mà \(a>b>c\) \(\Rightarrow b-a>c-a\Rightarrow\left[{}\begin{matrix}b-a=-2\\c-a=-4\end{matrix}\right.\)
\(\Rightarrow a;b;c\) là 3 số nguyên lẻ liên tiếp
Lại có \(P\left(b\right)-P\left(d\right)=4⋮b-d\Rightarrow b-d=\left\{-4;-2;2;4\right\}\)
Tương tự: \(c-d=\left\{-4;-2;2;4\right\}\) (1)
Do đã chứng minh được a; b và c là 2 số lẻ liên tiếp \(\Rightarrow c=b-2\) ; \(c=a-4\) (2)
- Nếu \(b-d=-4\Rightarrow c-d=b-2-d=-4-2=-6\) không thỏa mãn (1) (loại)
- Nếu \(b-d=-2\Rightarrow c-d=b-d-2=-4\) \(\Rightarrow c=d-4\)
\(\Rightarrow d=a\) theo (2) trái giả thiết a;b;c;d phân biệt (loại)
- Nếu \(b-d=2\Rightarrow c-d=b-d-2=0\Rightarrow c=d\) trái giả thiết c;d phân biệt (loại)
- Nếu \(b-d=4\Rightarrow c-d=b-d-2=2\)
\(\Rightarrow d\) là số lẻ liền trước của c
Vậy a;b;c;d là bốn số nguyên lẻ liên tiếp theo thứ tự \(a>b>c>d\)
mình nghĩ là làm như vầy, bạn xem thử nha
ta thay p(1)=23 và p(23)=84 lần lượt vào p(x)=ax+b
ta sẽ có: p(1)=1a+b=23
p(23)=23a+b=84
=> -22a =-61 (BẠN GIẢI HỆ PT NHÉ)
=> a=61/22
vì theo đề cho hệ số P(x) nguyên mà a=61/22( không nguyên)
=> không tồn tại một đa thức với hệ số nguyên P(x) thỏa mãn P(1)=23 và P(23)=84