Cho tam giác ABC có AB < AC . Trên AC lấy M sao cho CM = AB . Vẽ đường trung trực cắt của AC cắt tia phân giác của góc A tại O . CM :
a) Tam giác OAC cân
b) Tam giác OBM cân
c) Cho AC = 3√2
cm ; OA = 3 cm
CMR tam giác ABC là tam giác vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOB và ΔCOE có
OB=OE
OA=OC
AB=CE
=>ΔAOB=ΔCOE
b: góc OAB=góc OCE
=>góc OAB=góc OAC
=>AO là phân giác của góc BAC
a, BA = BD (gt)
=> Δ ABD cân tại B (đn)
góc ABC = 60 (gt)
=> Δ ABD đều (dấu hiệu)
b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)
Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)
từ (1) và (2) => Δ IBC cân tại I
c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ
=> \(\widehat{AID}\)=120 độ
=> \(\widehat{DIC}\)=60 độ
Xét Δ BIA và Δ CID có:
DI=AI (Δ BIA=Δ BID)
\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ
IB=IC(vìΔ IBC cân)
=>ΔBIA=Δ CID(c.g.c)
=> BA=CD mà BA=BD=> BD=DC
=> D là trung điểm của BC
d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm
Áp dụng định lí py-ta-go ta có:
BC2=AB2+AC2
=> AC2=BC2−AB2
=> AC2=144 - 36=108 cm
=> AC= \(\sqrt{108}\)(cm)
vậy BC=12 cm; AC= \(\sqrt{108}\)cm
a) Gọi trung điểm của AC là H.
Xét tam giác AOH và COH có:
AH = CH (gt)
OH chung
\(\widehat{AHO}=\widehat{CHO}=90^o\)
\(\Rightarrow\Delta AOH=\Delta COH\) (Hai cạnh góc vuông)
\(\Rightarrow OA=OC\) (Hai cạnh tương ứng)
Hay tam giác OAC cân tại O.
b) Xét tam giác ABO và tam giác AMO có:
AB = AM (gt)
Cạnh AO chung
\(\widehat{BAO}=\widehat{MAO}\) (Do AO là tia phân giác góc A)
\(\Rightarrow\Delta ABO=\Delta AMO\left(c-g-c\right)\Rightarrow OB=OM\)
Hay tam giác OMB cân tại O.
c) Ta có \(AH=\frac{AC}{2}=\frac{3\sqrt{2}}{2}\left(cm\right)\)
Xét tam giác vuông AOH, áp dụng định lý Pi-ta-go ta có:
\(OH^2=AO^2-AH^2=3^2-\left(\frac{3\sqrt{2}}{2}\right)^2=\frac{9}{2}\)
\(\Rightarrow OH=\frac{3\sqrt{2}}{2}=AH\)
Vậy ta giác OAH vuông cân tại H. Suy ra \(\widehat{OAH}=45^o\Rightarrow\widehat{BAC}=2.45^o=90^o\)
Vậy tam giác ABC vuông tại A.