Cho tam giác MNP vuông tại M. Tia phân giác của góc N cắt cạnh MP tại E. Kẻ EH vuông góc với NP tại H.
a, Chứng minh tam giác MNE= tam giác HNE
b, Cho NP=17cm; MN= 15cm. Tính MP
Các bạn giúp mik với mik cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét tam giác END và tam giác MND, có
\(\widehat{MND}=\widehat{DNE}=30^o\)(vì ND là tia phân giác)
\(\widehat{M}=\widehat{E}=90^o\)
ND là cạnh chung
\(\Rightarrow\Delta END=\Delta MND\)
\(\RightarrowĐPCM\)
a: Xét ΔMNE vuông tại E và ΔKNE vuông tại E có
NE chung
góc MNE=góc KNE
=>ΔMNE=ΔKNE
b: Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔNMD=ΔNKD
=>góc NKD=90 độ
=>DK vuông góc NP
a: Xét ΔMNK và ΔMIK có
MN=MI
góc NMK=góc IMK
MK chung
=>ΔMNK=ΔMIK
=>KN=KI
=>ΔKNI cân tại K
b: ΔMNK=ΔMIK
=>góc MIK=góc MNK=90 độ
b: Xét ΔMEP có
EI,PN là đường cao
EI cắt PN tại K
=>K là trực tâm
=>MK vuông góc EP
a) Xét hai tam giác vuông tam giác NMD ( M = 90 độ ) và tam giác END ( E = 90 độ ) có
ND là cạnh chung
góc MND = góc END ( vì ND là tia phân giác )
Do đó tam giác NMD = tam giác END ( cạnh huyền - góc nhọn )
b) Ta có tam giác NMD = tam giác END ( cmt )
=> NM = NE ( hai cạnh tương ứng )
Mà góc N = 60 độ
=> tam giác MNE là tam giác đều
c) Ta có tam giác MNE là tam giác đều
=> NM = NE = ME ( 1 )
=> góc NME = 60 độ
Ta có góc NME + góc EMP = 90 độ
Mà góc NME = 60 độ ( cmt )
=> góc EMP = 30 độ ( * )
Ta có tam giác NMP vuông tại M
=> góc N + góc P = 90 độ ( hai góc nhọn phụ nhau )
Mà góc N = 60 độ
=> góc P = 30 độ (**)
Từ (*) và (**) suy ra
tam giác EMP cân tại E
=> EM = EP ( 2 )
Từ (1) và (2) suy ra
NE = EP = 7 cm
Mà NE + EP = NP
7 cm + 7 cm = NP
=> NP = 14 cm
Vậy NP = 14 cm
a: Xet ΔMNE và ΔMPE có
MN=MP
NE=PE
ME chung
=>ΔMNE=ΔMPE
b: Xét ΔMHE vuông tại H và ΔMKE vuông tại K có
ME chung
góc HME=góc KME
=>ΔMHE=ΔMKE
=>EH=EK
c: MH=MK
EH=EK
=>ME là trung trực của HK
a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có
NQ chung
\(\widehat{MNQ}=\widehat{HNQ}\)
Do đó: ΔMNQ=ΔHNQ
b: ta có: ΔMNQ=ΔHNQ
nên NM=NH
hay ΔNHM cân tại N
mà \(\widehat{MNH}=60^0\)
nên ΔNHM đều
a: Xét ΔNME vuông tại M và ΔNHE vuông tại H có
NE chung
\(\widehat{MNE}=\widehat{HNE}\)
Do đó: ΔNME=ΔNHE
b: \(MP=\sqrt{17^2-15^2}=8\left(cm\right)\)