K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có

NQ chung

\(\widehat{MNQ}=\widehat{HNQ}\)

Do đó: ΔMNQ=ΔHNQ

b: ta có: ΔMNQ=ΔHNQ

nên NM=NH

hay ΔNHM cân tại N 

mà \(\widehat{MNH}=60^0\)

nên ΔNHM đều

11 tháng 5 2017

a)
Xét tam giác END và tam giác MND, có
\(\widehat{MND}=\widehat{DNE}=30^o\)(vì ND là tia phân giác)
\(\widehat{M}=\widehat{E}=90^o\)
ND là cạnh chung
\(\Rightarrow\Delta END=\Delta MND\)
\(\RightarrowĐPCM\)

 

a) Xét ΔMND vuông tại M và ΔHND vuông tại H có 

ND chung

\(\widehat{MND}=\widehat{HND}\)(ND là tia phân giác của \(\widehat{MNH}\))

Do đó: ΔMND=ΔHND(cạnh huyền-góc nhọn)

a: Xét ΔMNK và ΔMIK có

MN=MI

góc NMK=góc IMK

MK chung

=>ΔMNK=ΔMIK

=>KN=KI

=>ΔKNI cân tại K

b: ΔMNK=ΔMIK

=>góc MIK=góc MNK=90 độ

b: Xét ΔMEP có

EI,PN là đường cao

EI cắt PN tại K

=>K là trực tâm

=>MK vuông góc EP

a: NP^2=MN^2+MP^2

=>ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>DM=DE

1 tháng 2 2022

a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:

\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)

\(NK\) là cạnh chung

\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)

b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)

\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta MNQ\) cân tại \(N\)

Mà \(\widehat{MNQ}=60^o\)

\(\Rightarrow\Delta MNQ\) đều

Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)

\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)

\(\Rightarrow\Delta NKP\) cân tại \(K\)

c) Vì \(\Delta NMQ\) đều (chứng minh trên)

\(\Rightarrow NM=MQ=NQ=8cm\)

Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:

\(PN=2MN=2.8=16cm\)

\(\Rightarrow PQ=16-8=8cm\)

a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có

NK chung

\(\widehat{MNK}=\widehat{QNK}\)

Do đó: ΔMNK=ΔQNK

b: Ta có: ΔMNK=ΔQNK

nên NM=NQ

=>ΔNMQ cân tại N

mà \(\widehat{MNQ}=60^0\)

nên ΔMNQ đều

Xét ΔNKQ có 

\(\widehat{KPN}=\widehat{KNP}\)

nên ΔNKQ cân tại K

c: Xét ΔMNP vuông tại M có 

\(\cos N=\dfrac{MN}{NP}\)

=>NP=16(cm)

=>\(MP=8\sqrt{3}\left(cm\right)\)