K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

tam giác ABH vuông tại H. Áp dụng định lí Pi-ta-go ta có:

AH2=AB2-BH2=52-32=16  => AH=4

Ta có: HC=BC-BH=8-3=5  =>HC=5

Tam giác AHC vuông tại H. Áp dụng định lí Pi-ta-go ta có:

AC2=AH2+HC2=42+52=41

29 tháng 11 2019

Bài 4:

29 tháng 11 2019

Bài 6:

b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)

=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).

Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)

=> \(\widehat{ADB}+\widehat{HDB}=120^0\)

\(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)

=> \(2.\widehat{ADB}=120^0\)

=> \(\widehat{ADB}=120^0:2\)

=> \(\widehat{ADB}=60^0.\)

=> \(\widehat{ADB}=\widehat{HBD}=60^0\)

Xét \(\Delta ABD\) có:

(định lí tổng ba góc trong một tam giác).

=> \(90^0+\widehat{ABD}+60^0=180^0\)

=> \(150^0+\widehat{ABD}=180^0\)

=> \(\widehat{ABD}=180^0-150^0\)

=> \(\widehat{ABD}=30^0\)

Vậy \(\widehat{ABD}=30^0.\)

Chúc bạn học tốt!

23 tháng 2 2021

a) △ABC cân tại A ⇒ AB = AC

△ABH vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AB=AC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b) △ABH và △ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^o\\ AH:\text{cạnh chung}\\ AB=AC\)

\(\Rightarrow\text{△ABH = △ACH (cạnh huyền - cạnh góc vuông)}\)

 

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=8^2+6^2=100\)

hay AB=10(cm)

Ta có: AB=AC(ΔABC cân tại A)

mà AB=10cm(cmt)

nên AC=10cm

Vậy: AB=10cm; AC=10cm

b) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)