Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\widehat{B_1}+\widehat{B_2}+\widehat{B_3}=180^o\)
\(\Rightarrow\widehat{B_1}+\widehat{B_3}=90^o\left(\widehat{B_2}=90^o\right)\)
Trong t/g AHB có: \(\widehat{B_3}+\widehat{BAH}=90^o\)
\(\Rightarrow\widehat{B_1}=\widehat{BAH}\) hay \(\widehat{DBM}=\widehat{BAH}\)
Ta có: \(\widehat{C_1}+\widehat{C_2}+\widehat{C_3}=180^o\)
\(\Rightarrow\widehat{C_1}+\widehat{C_3}=90^o\left(\widehat{C_2}=90^o\right)\)
Trong t/g ACH có: \(\widehat{C_1}+\widehat{CAH}=90^o\)
\(\Rightarrow\widehat{C_3}=\widehat{CAH}\) hay \(\widehat{ECN}=\widehat{CAH}\)
Vậy...
Bài dễ:
Vẽ hình ra bạn( sửa lại cái đề là AB=AC)
a, Ta có: góc B = góc C có chung cạnh BC
E=D=90o
Do đó tg BDC= tg CEB
b, kí hiệu góc B1 ở trên B2 ở dưới; bên góc C cũng vậy
Ta có : gB=gC; gB2=gC2;
gB=gB1+gB2; gC=gC1+gC2;
Do đó gB1=gB2(dpcm)
c, Vì ABC là tgiac cân và AI cắt BC tại trung điểm H
Nên AH vuông góc vs BC hay AI vuông góc vs BC
---end---
a) Tự vẽ
b) Vì CI là phân giác ACB
=> ACI = BCI = \(\frac{60°}{2}\)= 30°
Vì IE // BC (gt)
=> ICB = EIC = 30° ( so le trong)
d) Vì DE//BC (gt)
=> AED = ACB = 60° ( đồng vị)
Xét ∆AIE ta có :
AIE + AEI + IAE = 180°
=> IAK = 180° - 90° - 60° = 30°
Ta có :
AEI = KEC = 60° ( đối đỉnh)
Xét ∆EKC ta có :
EKC + KCE + KEC = 180°
=> KCE = 180° - 90° - 60° = 30°
=> EAI = KCE = 30°
Mà 2 góc này ở vị trí so le trong
=> AH//KC
e) Xét ∆AHC ta có :
ACH + CAH + AHC = 180°
=> CAH = 180° - 90° - 60° = 30°
pham vu anh tuan oi ban co the ve hinh va viet gia thiet cho mik dc ko .lm on!!!
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng