K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

x y B A C D x y A B C z

a. Ta có ; AC = AD +CD

\(\Rightarrow\)AC = 4 + 3

\(\Rightarrow\)AC = 7cm

b.góc DBC = góc ABC - góc ABD

\(\Rightarrow\widehat{DBC}=55^0-30^0=25^0\)

c.\(\widehat{ABz}=\widehat{DBz}-\widehat{ABD}\)

\(\Rightarrow\widehat{ABz}=90^0-30^0=50^0\)

Học tốt

a) Vì D thuộc đoạn thẳng AC nên ta có:

AC=AD+DC=4+3=7AC=AD+DC=4+3=7 (cm)

b) Do ˆxBy=55oxBy^=55o hay ˆABC=55oABC^=55o

Ta có BD, BC thuộc cùng một mặt phẳng bờ chưa tia BA

và có ˆABD=30o<ˆABc=55oABD^=30o<ABc^=55o

⇒BD⇒BD nằm giữa tia BA,BCBA,BC

⇒ˆABC=ˆABD+ˆDBC⇒ABC^=ABD^+DBC^

⇒ˆDBC=ˆABC−ˆABD=55o−30o=25o⇒DBC^=ABC^−ABD^=55o−30o=25o

c) Vì Bz,BABz,BA cùng thuộc một nửa mặt phẳng bờ chứa tia BDBD

Và có ˆDBz=90o>ˆDBA=30oDBz^=90o>DBA^=30o

⇒BA⇒BA nằm giữa tia BD,BzBD,Bz

⇒ˆDBz=ˆDBA+ˆABz⇒DBz^=DBA^+ABz^

⇒ˆABz=ˆDBz−ˆDBA=90o−ˆ30o=60o⇒ABz^=DBz^−DBA^=90o−30o^=60o.

image

9 tháng 2 2021

a) Vì điểm D nằm giữa hai điểm A và C nên ta có:

AC=AD+CD

hay AC=4+3=7(cm)

Vậy: AC=7cm

b) Trên cùng một nửa mặt phẳng bờ chứa tia BA, ta có: ABD^<ABC^(300<500)

nên tia BD nằm giữa hai tia BA,BC

⇔ABD^+CBD^=ABC^

⇔DBC^=ABC^−ABD^=500−300

hay DBC^=200

Vậy: 

Xét ΔBAE và ΔBDC có 

BA=BD

\(\widehat{ABE}\) chung

BE=BC

Do đó: ΔBAE=ΔBDC

Suy ra: AE=CD

Xét ΔMAC và ΔMDE có 

\(\widehat{MCA}=\widehat{MED}\)

AC=DE

\(\widehat{MAC}=\widehat{MDE}\)

Do đó: ΔMAC=ΔMDE

Suy ra: MA=MD

26 tháng 1 2022

Ôi tr :v

21 tháng 2 2017

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

18 tháng 4 2017

Vẽ hình như sau:

29 tháng 1 2018

x B y

a) Vì điểm D nằm giữa hai điểm A và C nên ta có:

AC=AD+CD

hay AC=4+3=7(cm)

Vậy: AC=7cm

b) Trên cùng một nửa mặt phẳng bờ chứa tia BA, ta có: \(\widehat{ABD}< \widehat{ABC}\left(30^0< 50^0\right)\)

nên tia BD nằm giữa hai tia BA,BC

\(\Leftrightarrow\widehat{ABD}+\widehat{CBD}=\widehat{ABC}\)

\(\Leftrightarrow\widehat{DBC}=\widehat{ABC}-\widehat{ABD}=50^0-30^0\)

hay \(\widehat{DBC}=20^0\)

Vậy: \(\widehat{DBC}=20^0\)