K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

Xét tứ giác BADH

BDA = 90* ( AD vuông Bz tại D )

BHA = 90* ( AH vuông By tại H )

Nên BDA = BHA = 90*

Vậy tứ giác BADH nội tiếp đường tròn tâm I đường kính AB với I là trung điểm AB 

b) Ta có DBH = DBO ( BD là phân giác xBy)

Mà DBO = ODB ( tam giác OBD cân tại O có OB = OD = R)

Nên DBH = ODB 

Mà 2 góc này ở vị trí so le trong

Suy ra OD // BH

26 tháng 5 2016

bạn có thể vẽ hình được không zạ hiii mà nếu không thì thui tại hình mik vẽ không ra

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE

=góc ABE+90 độ-góc HAB

=90 độ

=>HE vuông góc AC

=>HE//CD

a: Xet (O) có

ΔAHB nội tiếp

AB là đường kính

Do đo: ΔAHB vuông tại H

=>AH vuông góc với BC

AB^2=BC*BH

b: ΔOAD cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOD

Xét ΔOAC và ΔODC có

OA=OD

góc AOC=góc DOC

OC chung

Do đó: ΔOAC=ΔODC

=>góc ODC=90 độ

=>CD là tiếp tuyến của (O)

a: góc NED+góc NCD=180 độ

=>NEDC nội tiếp

b: ΔAHB vuôg tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2

=>AM*AB=AN*AC