K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

a) Xét tg DAB có AM=MD (gt)

                          DP=PB(gt)

=> MP là dg tb tg DAB => MP //AB          (1)

Xét tg BDC có BN=NC(gt)

                       DO=PB(gt)

=> PN là dg tb tg DBC=> PN//DC. Mà DC//AB ( hthang ABCD)

=> PN//AB.                                              (2)

Từ (1) và (2) => M,N,P thẳng hàng 

b) Xét tg ABC có BN=NC(gt)

                            NK//AB( MN//AB)

=> K td AC

C) xét tg ABCD có AM=MD(gt)

                                BN=NC(gt)

=> MN là dg tb tg ABCD => MN=(AB+CD)/2          (1)

ta có MP là dg tb tg ABD(cmt)=> MP=1/2AB=AB/2         (2)

 Ta có NK là dg tb tg ABC(cmt) =>NK=1/2AB=AB/2.       (3)

Mà ta có MN= MP+PK+NK                                              (4)

Từ (1)(2)(3)(4) suy ra

(AB+CD)/2 = AB/2+AB/2+PK

<=> (AB+CD-AB-AB)/2=PK

<=>(-AB+CD)/2=PK

=> (CD-AB):2=PK

 

a: Xét ΔDAB có

M là trung điểm của AD

P là trung điểm của BD

Do đó: MP là đường trung bình của ΔDAB

Suy ra: MP//AB

Xét hình thang ABCD có 

M là trung điểm của AD

N là trung điểm của BC

Do đó: MN là đường trung bình của hình thang ABCD

Suy ra: MN//AB//CD

Ta có: MN//AB

MP//AB

mà MN và MP có điểm chung là M

nên M,N,P thẳng hàng

b: Xét ΔABC có 

N là trung điểm của BC

NK//AB

Do đó: K là trung điểm của AC

B C A D M N E E

Trên ta BN lấy điểm E sao cho N là trung điểm của BE .

\(\Delta NBC\)và \(\Delta NED\) có :

NC = ND ( gt ) 

\(\widehat{BNC}=\widehat{DNE}\)( hai góc đối đỉnh )

NB = NE ( theo cách vẽ ) .

Do đó \(\Delta NBC=\Delta NED\)( c.g.c ) , suy ra DE = BC .

Theo giả thiết  MN = \(\frac{AD+BC}{2}\), vì thế suy ra MN = \(\frac{AD+DE}{2}\)                 (1) 

Mặt khác trong tam giác ABE thì MN là đường trung bình của tam giá đó nên MN = \(\frac{AE}{2}\).            (2)

Từ (1) và (2) suy ra : AE = AD + DE . Đẳng thức này chỉ xảy ra khi ba điểm A,D,E thẳng hàng .

Lại do \(\Delta NBC\)\(\Delta NED\)nên \(\widehat{BCD}=\widehat{EDC}\)do đó DE // BC ( hai góc ở vị trí so le trong bằng nhau ) , từ đó suy ra AD // BC.

Vậy tứ giác ABCD là hình thang ( đpcm ).

Xét ΔDAB có 

M là trung điểm của AD

P là trung điểm của BD

Do đó: MP là đường trung bình của ΔDAB

Suy ra: MP//AB

Xét ΔADC có 

Q là trung điểm của AC

M là trung điểm của AD

Do đó: QM là đường trung bình của ΔADC

Suy ra: QM//DC

hay QM//AB

Xét ΔACB có 

N là trung điểm của BC

Q là trung điểm của AC

Do đó: NQ là đường trung bình của ΔACB

Suy ra: NQ//AB

Ta có: NQ//AB

QM//AB

mà NQ và QM có điểm chung là Q

nên N,Q,M thẳng hàng(1)

Ta có: MP//AB

MQ//AB

mà MP và MQ có điểm chung là M

nên M,P,Q thẳng hàng(2)

Từ (1) và (2) suy ra M,N,P,Q thẳng hàng